1
|
Irish S, Sutter A, Pinzoni L, Sydney M, Travers L, Murray D, de Coriolis J, Immler S. Heatwave-Induced Paternal Effects Have Limited Adaptive Benefits in Offspring. Ecol Evol 2024; 14:e70399. [PMID: 39435435 PMCID: PMC11491414 DOI: 10.1002/ece3.70399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
As the threat of climate change and associated heatwaves grows, we need to understand how natural populations will respond. Inter-generational non-genetic inheritance may play a key role in rapid adaptation, but whether such mechanisms are truly adaptive and sufficient to protect wild populations is unclear. The contribution of paternal effects in particular is not fully understood, even though the male reproductive system may be highly sensitive to heatwaves. We used the zebrafish Danio rerio to investigate the effects of heatwaves on male fertility and assess potential adaptive benefits to their offspring in a number of large-scale heatwave experiments. Heatwave conditions had negative effects on male fertility by reducing gamete quality and fertilisation success, and we found indications of an adaptive effect on hatching in offspring produced by heatwave-exposed males. Our findings highlight the importance of including male and female fertility when determining species ability to cope with extreme conditions and suggest that parental effects provide limited adaptive benefits.
Collapse
Affiliation(s)
- Sara D. Irish
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andreas Sutter
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Livia Pinzoni
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Mabel C. Sydney
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Laura Travers
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
2
|
Li J, Zhao W, Zhu J, Wang S, Ju H, Chen S, Basioura A, Ferreira-Dias G, Liu Z. Temperature Elevation during Semen Delivery Deteriorates Boar Sperm Quality by Promoting Apoptosis. Animals (Basel) 2023; 13:3203. [PMID: 37893927 PMCID: PMC10603671 DOI: 10.3390/ani13203203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Semen delivery practice is crucial to the efficiency of artificial insemination using high-quality boar sperm. The present study aimed to evaluate the effect of a common semen delivery method, a Styrofoam box, under elevated temperatures on boar sperm quality and functionality and to investigate the underlying molecular responses of sperm to the temperature rise. Three pooled semen samples from 10 Duroc boars (3 ejaculates per boar) were used in this study. Each pooled semen sample was divided into two aliquots. One aliquot was stored at a constant 17 °C as the control group. Another one was packaged in a well-sealed Styrofoam box and placed in an incubator at 37 °C for 24 h to simulate semen delivery on hot summer days and subsequently transferred to a refrigerator at 17 °C for 3 days. The semen temperature was continuously monitored. The semen temperature was 17 °C at 0 h of storage and reached 20 °C at 5 h, 30 °C at 14 h, and 37 °C at 24 h. For each time point, sperm quality and functionality, apoptotic changes, expression levels of phosphorylated AMPK, and heat shock proteins HSP70 and HSP90 were determined by CASA, flow cytometry, and Western blotting. The results showed that elevated temperature during delivery significantly deteriorated boar sperm quality and functionality after 14 h of delivery. Storage back to 17 °C did not recover sperm motility. An increased temperature during delivery apparently promoted the conversion of sperm early apoptosis to late apoptosis, showing a significant increase in the expression levels of Bax and Caspase 3. The levels of phosphorylated AMPK were greatly induced by the temperature rise to 20 °C during delivery but reduced thereafter. With the temperature elevation, expression levels of HSP70 and HSP90 were notably increased. Our results indicate that a temperature increase during semen delivery greatly damages sperm quality and functionality by promoting sperm apoptosis. HSP70 and HSP90 could participate in boar sperm resistance to temperature changes by being associated with AMPK activation and anti-apoptotic processes.
Collapse
Affiliation(s)
- Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuaibiao Wang
- DanAg Agritech Consulting (Zhengzhou) Co., Ltd., Zhengzhou 450000, China;
- Royal Veterinary College, London NW1 0TU, UK
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Science, Ningbo 315040, China;
| | - Athina Basioura
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Leach TS, Hofmann GE. Marine heatwave temperatures enhance larval performance but are meditated by paternal thermal history and inter-individual differences in the purple sea urchin, Strongylocentrotus purpuratus. Front Physiol 2023; 14:1230590. [PMID: 37601631 PMCID: PMC10436589 DOI: 10.3389/fphys.2023.1230590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism's reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ. Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus, were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014-2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species.
Collapse
|
4
|
Selvaraju S, Ramya L, Swathi D, Archana SS, Lavanya M, Krishnappa B, Binsila BK, Mahla AS, Arangasamy A, Andonissamy J, Kumar P, Sharma RK. Cryostress induces fragmentation and alters the abundance of sperm transcripts associated with fertilizing competence and reproductive processes in buffalo. Cell Tissue Res 2023:10.1007/s00441-023-03764-8. [PMID: 37079096 DOI: 10.1007/s00441-023-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/09/2023] [Indexed: 04/21/2023]
Abstract
The study aimed to assess the influence of cryostress on RNA integrity and functional significance in sperm fertilizing ability. The fresh and post-thawed buffalo sperm (n = 6 each) samples were evaluated for their functional attributes, and sperm total RNA was subjected to transcriptome sequencing followed by validation using real-time PCR and dot blot. Overall, 6911 genes had an expression of FPKM > 1, and among these 431 genes were abundantly expressed (FPKM > 20) in buffalo sperm. These abundantly expressed genes regulate reproductive functions such as sperm motility (TEKT2, SPEM1, and PRM3, FDR = 1.10E-08), fertilization (EQTN, PLCZ1, and SPESP1, FDR = 7.25E-06) and the developmental process involved in reproduction (SPACA1, TNP1, and YBX2, FDR = 7.21E-06). Cryopreservation significantly (p < 0.05) affected the structural and functional membrane integrities of sperm. The expression levels of transcripts that regulate the metabolic activities and fertility-related functions were compromised during cryopreservation. Interestingly, cryostress induces the expression of genes involved (p < 0.05) in chemokine signaling (CX3CL1, CCL20, and CXCR4), G-protein coupled receptor binding (ADRB1, EDN1, and BRS3), translation (RPS28, MRPL28, and RPL18A), oxidative phosphorylation (ND1, ND2, and COX2), response to reactive oxygen species (GLRX2, HYAL2, and EDN1), and immune responses (CX3CL1, CCL26, and TBXA2R). These precociously expressed genes during cryopreservation alter the signaling mechanisms that govern sperm functional competence and can impact fertilization and early embryonic development.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Laxman Ramya
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | | | - Maharajan Lavanya
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Ajit Singh Mahla
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
- Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304501, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Jerome Andonissamy
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Rakesh Kumar Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| |
Collapse
|
5
|
Wang WWY, Gunderson AR. The Physiological and Evolutionary Ecology of Sperm Thermal Performance. Front Physiol 2022; 13:754830. [PMID: 35399284 PMCID: PMC8987524 DOI: 10.3389/fphys.2022.754830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Ongoing anthropogenic climate change has increased attention on the ecological and evolutionary consequences of thermal variation. Most research in this field has focused on the physiology and behavior of diploid whole organisms. The thermal performance of haploid gamete stages directly tied to reproductive success has received comparatively little attention, especially in the context of the evolutionary ecology of wild (i.e., not domesticated) organisms. Here, we review evidence for the effects of temperature on sperm phenotypes, emphasizing data from wild organisms whenever possible. We find that temperature effects on sperm are pervasive, and that above normal temperatures in particular are detrimental. That said, there is evidence that sperm traits can evolve adaptively in response to temperature change, and that adaptive phenotypic plasticity in sperm traits is also possible. We place results in the context of thermal performance curves, and encourage this framework to be used as a guide for experimental design to maximize ecological relevance as well as the comparability of results across studies. We also highlight gaps in our understanding of sperm thermal performance that require attention to more fully understand thermal adaptation and the consequences of global change.
Collapse
|
6
|
Wang Y, Yuan X, Ali MA, Qin Z, Zhang Y, Zeng C. piR-121380 Is Involved in Cryo-Capacitation and Regulates Post-Thawed Boar Sperm Quality Through Phosphorylation of ERK2 via Targeting PTPN7. Front Cell Dev Biol 2022; 9:792994. [PMID: 35155446 PMCID: PMC8826432 DOI: 10.3389/fcell.2021.792994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Cryopreservation induces capacitation-like (cryo-capacitation) changes, similar to natural capacitation, and affects the fertility potential of post-thawed sperm. The molecular mechanism of sperm cryo-capacitation during cryopreservation remains unknown. PIWI-interacting RNAs (piRNAs) have been reported to be involved in cryo-capacitation of post-thawed sperm and regulation of sperm motility, capacitation, and chemotaxis. In this study, protein tyrosine phosphatase nonreceptor type 7 (PTPN7) was positively targeted by piR-121380 after a dual luciferase assay. The mRNA expression of PTPN7 and piR-121380 was significantly decreased (p < 0.01); however, PTPN7 protein was significantly increased (p < 0.01) in post-thawed boar sperm. Furthermore, E1RK1/2 phosphorylation was reduced during cryopreservation. Six hours after transfection with piR-121380 mimic and inhibitor, the phosphorylation of ERK2 was significantly increased and decreased (p < 0.01), respectively. Furthermore, the highest and lowest total sperm motility, forward motility, and capacitation rate were observed after piR-121380 mimic and inhibitor treatments, respectively. The concentration of intracellular calcium ([Ca2+]i) showed no significant difference after transfection with either piR-121380 mimic or inhibitor at 1, 3, and 6 h. In conclusion, we demonstrated that piR-121380 modulates ERK2 phosphorylation by targeting PTPN7, which induces sperm cryo-capacitation, and eventually affects the motility and fertility potential of post-thawed sperm.
Collapse
Affiliation(s)
- Yihan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiang Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Malik Ahsan Ali
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore, Pakistan
| | - Ziyue Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Changjun Zeng,
| |
Collapse
|
7
|
Qin Z, Wang W, Ali MA, Wang Y, Zhang Y, Zhang M, Zhou G, Yang JD, Zeng C. Transcriptome-wide m 6A profiling reveals mRNA post-transcriptional modification of boar sperm during cryopreservation. BMC Genomics 2021; 22:588. [PMID: 34344298 PMCID: PMC8335898 DOI: 10.1186/s12864-021-07904-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cryopreservation induces transcriptomic and epigenetic modifications that strongly impairs sperm quality and function, and thus decrease reproductive performance. N6-methyladenosine (m6A) RNA methylation varies in response to stress and has been implicated in multiple important biological processes, including post-transcriptional fate of mRNA, metabolism, and apoptosis. This study aimed to explore whether cryopreservation induces m6A modification of mRNAs associated with sperm energy metabolism, cryoinjuries, and freezability. Results The mRNA and protein expression of m6A modification enzymes were significantly dysregulated in sperm after cryopreservation. Furthermore, m6A peaks were mainly enriched in coding regions and near stop codons with classical RRACH motifs. The mRNAs containing highly methylated m6A peaks (fts vs. fs) were significantly associated with metabolism and gene expression, while the genes with less methylated m6A peaks were primarily involved in processes regulating RNA metabolism and transcription. Furthermore, the joint analysis of DMMGs and differentially expressed genes indicated that both of these play a vital role in sperm energy metabolism and apoptosis. Conclusions Our study is the first to reveal the dynamic m6A modification of mRNAs in boar sperm during cryopreservation. These epigenetic modifications may affect mRNA expression and are closely related to sperm motility, apoptosis, and metabolism, which will provide novel insights into understanding of the cryoinjuries or freezability of boar sperm during cryopreservation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07904-8.
Collapse
Affiliation(s)
- Ziyue Qin
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Wencan Wang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Malik Ahsan Ali
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China.,Department of Theriogenology, Riphah College of Veterinary Sciences, 54000, Lahore, Pakistan
| | - Yihan Wang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Guangbin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Jian-Dong Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China. .,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China.
| |
Collapse
|
8
|
Lymbery RA, Kennington WJ, Evans JP. The thermal environment of sperm affects offspring success: a test of the anticipatory paternal effects hypothesis in the blue mussel. Biol Lett 2021; 17:20210213. [PMID: 34228940 PMCID: PMC8260270 DOI: 10.1098/rsbl.2021.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
There has been an explosion of recent evidence that environments experienced by fathers or their ejaculates can influence offspring phenotypes (paternal effects). However, little is known about whether such effects are adaptive, which would have far-reaching implications for the many species facing rapidly changing environments. For example, some arguments suggest paternal effects might be a source of cross-generational plasticity, preparing offspring to face similar conditions to their father (anticipatory hypothesis). Alternatively, ejaculate-mediated effects on offspring may be non-adaptive by-products of stress. Here, we conduct an experiment to distinguish between these predictions, exposing ejaculates of the externally fertilizing mussel Mytilus galloprovincialis to ambient (19°C) and high (24°C) temperatures, then rearing offspring groups in temperatures that match and mismatch those of sperm. We find that, overall, high temperature-treated sperm induced higher rates of normal offspring development and higher success in transitioning to second-stage larvae, which may represent adaptive epigenetic changes or selection on sperm haplotypes. However, the progeny of high temperature-treated sperm did not perform better than those of ambient temperature-treated sperm when rearing temperatures were high. Overall, these findings offer little support for the anticipatory hypothesis and suggest instead that beneficial paternal effects may be eroded when offspring develop under stressful conditions.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Australia
| | - W. J. Kennington
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Australia
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Australia
| |
Collapse
|
9
|
Chirgwin E, Connallon T, Monro K. The thermal environment at fertilization mediates adaptive potential in the sea. Evol Lett 2021; 5:154-163. [PMID: 33868711 PMCID: PMC8045945 DOI: 10.1002/evl3.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Additive genetic variation for fitness at vulnerable life stages governs the adaptive potential of populations facing stressful conditions under climate change, and can depend on current conditions as well as those experienced by past stages or generations. For sexual populations, fertilization is the key stage that links one generation to the next, yet the effects of fertilization environment on the adaptive potential at the vulnerable stages that then unfold during development are rarely considered, despite climatic stress posing risks for gamete function and fertility in many taxa and external fertilizers especially. Here, we develop a simple fitness landscape model exploring the effects of environmental stress at fertilization and development on the adaptive potential in early life. We then test our model with a quantitative genetic breeding design exposing family groups of a marine external fertilizer, the tubeworm Galeolaria caespitosa, to a factorial manipulation of current and projected temperatures at fertilization and development. We find that adaptive potential in early life is substantially reduced, to the point of being no longer detectable, by genotype‐specific carryover effects of fertilization under projected warming. We interpret these results in light of our fitness landscape model, and argue that the thermal environment at fertilization deserves more attention than it currently receives when forecasting the adaptive potential of populations confronting climate change.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences Monash University Clayton Victoria Australia.,Cesar Australia Parkville Victoria Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
10
|
Lymbery RA, Evans JP, Kennington WJ. Post-ejaculation thermal stress causes changes to the RNA profile of sperm in an external fertilizer. Proc Biol Sci 2020; 287:20202147. [PMID: 33171088 PMCID: PMC7735278 DOI: 10.1098/rspb.2020.2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Sperm cells experience considerable post-ejaculation environmental variation. However, little is known about whether this affects their molecular composition, probably owing to the assumption that sperm are transcriptionally quiescent. Nevertheless, recent evidence shows sperm have distinct RNA profiles that affect fertilization and embryo viability. Moreover, RNAs are expected to be highly sensitive to extracellular changes. One such group of RNAs are heat shock protein (hsp) transcripts, which function in stress responses and are enriched in sperm. Here, we exploit the experimental tractability of the mussel Mytilus galloprovincialis by exposing paired samples of ejaculated sperm to ambient (19°C) and increased (25°C) temperatures, then measure (i) sperm motility phenotypes, and (ii) messenger RNA (mRNA) levels of two target genes (hsp70 and hsp90) and several putative reference genes. We find no phenotypic changes in motility, but reduced mRNA levels for hsp90 and the putative reference gene gapdh at 25°C. This could reflect either decay of specific RNAs, or changes in translation and degradation rates of transcripts to maintain sperm function under stress. These findings represent, to our knowledge, the first evidence for changes in sperm RNA profiles owing to post-ejaculation environments, and suggest that sperm may be more vulnerable to stress from rising temperatures than currently thought.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | | |
Collapse
|