1
|
Ghisbain G, Thiery W, Massonnet F, Erazo D, Rasmont P, Michez D, Dellicour S. Projected decline in European bumblebee populations in the twenty-first century. Nature 2024; 628:337-341. [PMID: 37704726 DOI: 10.1038/s41586-023-06471-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023]
Abstract
Habitat degradation and climate change are globally acting as pivotal drivers of wildlife collapse, with mounting evidence that this erosion of biodiversity will accelerate in the following decades1-3. Here, we quantify the past, present and future ecological suitability of Europe for bumblebees, a threatened group of pollinators ranked among the highest contributors to crop production value in the northern hemisphere4-8. We demonstrate coherent declines of bumblebee populations since 1900 over most of Europe and identify future large-scale range contractions and species extirpations under all future climate and land use change scenarios. Around 38-76% of studied European bumblebee species currently classified as 'Least Concern' are projected to undergo losses of at least 30% of ecologically suitable territory by 2061-2080 compared to 2000-2014. All scenarios highlight that parts of Scandinavia will become potential refugia for European bumblebees; it is however uncertain whether these areas will remain clear of additional anthropogenic stressors not accounted for in present models. Our results underline the critical role of global change mitigation policies as effective levers to protect bumblebees from manmade transformation of the biosphere.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium.
| | - Wim Thiery
- Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - François Massonnet
- Earth and Climate Research Center, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Souchet J, Josserand A, Darnet E, Le Chevalier H, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Guillaume O, Mossoll-Torres M, Pottier G, Philippe H, Aubret F, Gangloff EJ. Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1102-1115. [PMID: 37723946 DOI: 10.1002/jez.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Alicia Josserand
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique (UMR CNRS 5174), Université de Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
3
|
Willot Q, Ørsted M, Malte H, Overgaard J. Cold comfort: metabolic rate and tolerance to low temperatures predict latitudinal distribution in ants. Proc Biol Sci 2023; 290:20230985. [PMID: 37670587 PMCID: PMC10510448 DOI: 10.1098/rspb.2023.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Metabolic compensation has been proposed as a mean for ectotherms to cope with colder climates. For example, under the metabolic cold adaptation and the metabolic homeostasis hypotheses (MCA and MHH), it has been formulated that cold-adapted ectotherms should display both higher (MCA) and more thermally sensitive (MHH) metabolic rates (MRs) at lower temperatures. However, whether such compensation can truly be associated with distribution, and whether it interplays with cold tolerance to predict species' climatic niches, remains largely unclear despite broad ecological implications thereof. Here, we teased apart the relationship between MRs, cold tolerance and distribution, to test the MCA/MHH among 13 European ant species. We report clear metabolic compensation effects, consistent with the MCA and MHH, where MR parameters strongly correlated with latitude and climatic factors across species' distributions. The combination of both cold tolerance and MRs further upheld the best predictions of species' environmental temperatures and limits of northernmost distribution. To our knowledge, this is the first study showing that the association of metabolic data with cold tolerance supports better predictive models of species' climate and distribution in social insects than models including cold tolerance alone. These results also highlight that adaptation to higher latitudes in ants involved adjustments of both cold tolerance and MRs, to allow this extremely successful group of insects to thrive under colder climates.
Collapse
Affiliation(s)
- Quentin Willot
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Ørsted
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg E, Denmark
| | - Hans Malte
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
4
|
Carvajal Acosta AN, Formenti L, Godschalx A, Katsanis A, Schapheer C, Mooney K, Villagra C, Rasmann S. Ecological convergence in phytochemistry and flower-insect visitor interactions along an Andean elevation gradient. Ecol Evol 2023; 13:e10418. [PMID: 37600487 PMCID: PMC10432872 DOI: 10.1002/ece3.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The diversity of specialized molecules produced by plants radiating along ecological gradients is thought to arise from plants' adaptations to local conditions. Therefore, closely related species growing in similar habitats should phylogenetically converge, or diverge, in response to similar climates, or similar interacting animal communities. We here asked whether closely related species in the genus Haplopappus (Asteraceae) growing within the same elevation bands in the Andes, converged to produce similar floral odors. To do so, we combine untargeted analysis of floral volatile organic compounds with insect olfactory bioassay in congeneric Haplopappus (Asteraceae) species growing within the same elevation bands along the Andean elevational gradient. We then asked whether the outcome of biotic interactions (i.e., pollination vs. seed predation) would also converge across species within the same elevation. We found that flower odors grouped according to their elevational band and that the main floral visitor preferred floral heads from low-elevation band species. Furthermore, the cost-benefit ratio of predated versus fertilized seeds was consistent within elevation bands, but increased with elevation, from 6:1 at low to 8:1 at high elevations. In the light of our findings, we propose that climate and insect community changes along elevation molded a common floral odor blend, best adapted for the local conditions. Moreover, we suggest that at low elevation where floral resources are abundant, the per capita cost of attracting seed predators is diluted, while at high elevation, sparse plants incur a higher herbivory cost per capita. Together, our results suggest that phytochemical convergence may be an important factor driving plant-insect interactions and their ecological outcomes along ecological gradients.
Collapse
Affiliation(s)
- Alma Nalleli Carvajal Acosta
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Ludovico Formenti
- Institut für Ökologie und EvolutionUniversität BernBernSwitzerland
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | | | - Angelos Katsanis
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Constanza Schapheer
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Kailen Mooney
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Cristian Villagra
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
5
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Maihoff F, Sahler S, Schoger S, Brenzinger K, Kallnik K, Sauer N, Bofinger L, Schmitt T, Nooten SS, Classen A. Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Alpine bumble bees are the most important pollinators in temperate mountain ecosystems. Although they are used to encounter small-scale successions of very different climates in the mountains, many species respond sensitively to climatic changes, reflected in spatial range shifts and declining populations worldwide. Cuticular hydrocarbons (CHCs) mediate climate adaptation in some insects. However, whether they predict the elevational niche of bumble bees or their responses to climatic changes remains poorly understood. Here, we used three different approaches to study the role of bumble bees’ CHCs in the context of climate adaptation: using a 1,300 m elevational gradient, we first investigated whether the overall composition of CHCs, and two potentially climate-associated chemical traits (proportion of saturated components, mean chain length) on the cuticle of six bumble bee species were linked to the species’ elevational niches. We then analyzed intraspecific variation in CHCs of Bombus pascuorum along the elevational gradient and tested whether these traits respond to temperature. Finally, we used a field translocation experiment to test whether CHCs of Bombus lucorum workers change, when translocated from the foothill of a cool and wet mountain region to (a) higher elevations, and (b) a warm and dry region. Overall, the six species showed distinctive, species-specific CHC profiles. We found inter- and intraspecific variation in the composition of CHCs and in chemical traits along the elevational gradient, but no link to the elevational distribution of species and individuals. According to our expectations, bumble bees translocated to a warm and dry region tended to express longer CHC chains than bumble bees translocated to cool and wet foothills, which could reflect an acclimatization to regional climate. However, chain lengths did not further decrease systematically along the elevational gradient, suggesting that other factors than temperature also shape chain lengths in CHC profiles. We conclude that in alpine bumble bees, CHC profiles and traits respond at best secondarily to the climate conditions tested in this study. While the functional role of species-specific CHC profiles in bumble bees remains elusive, limited plasticity in this trait could restrict species’ ability to adapt to climatic changes.
Collapse
|
7
|
Lozier JD, Strange JP, Heraghty SD. Whole genome demographic models indicate divergent effective population size histories shape contemporary genetic diversity gradients in a montane bumble bee. Ecol Evol 2023; 13:e9778. [PMID: 36744081 PMCID: PMC9889631 DOI: 10.1002/ece3.9778] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Understanding historical range shifts and population size variation provides an important context for interpreting contemporary genetic diversity. Methods to predict changes in species distributions and model changes in effective population size (N e) using whole genomes make it feasible to examine how temporal dynamics influence diversity across populations. We investigate N e variation and climate-associated range shifts to examine the origins of a previously observed latitudinal heterozygosity gradient in the bumble bee Bombus vancouverensis Cresson (Hymenoptera: Apidae: Bombus Latreille) in western North America. We analyze whole genomes from a latitude-elevation cline using sequentially Markovian coalescent models of N e through time to test whether relatively low diversity in southern high-elevation populations is a result of long-term differences in N e. We use Maxent models of the species range over the last 130,000 years to evaluate range shifts and stability. N e fluctuates with climate across populations, but more genetically diverse northern populations have maintained greater N e over the late Pleistocene and experienced larger expansions with climatically favorable time periods. Northern populations also experienced larger bottlenecks during the last glacial period, which matched the loss of range area near these sites; however, bottlenecks were not sufficient to erode diversity maintained during periods of large N e. A genome sampled from an island population indicated a severe postglacial bottleneck, indicating that large recent postglacial declines are detectable if they have occurred. Genetic diversity was not related to niche stability or glacial-period bottleneck size. Instead, spatial expansions and increased connectivity during favorable climates likely maintain diversity in the north while restriction to high elevations maintains relatively low diversity despite greater stability in southern regions. Results suggest genetic diversity gradients reflect long-term differences in N e dynamics and also emphasize the unique effects of isolation on insular habitats for bumble bees. Patterns are discussed in the context of conservation under climate change.
Collapse
Affiliation(s)
- Jeffrey D. Lozier
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - James P. Strange
- Department of EntomologyThe Ohio State UniversityColumbusOhioUSA
| | - Sam D. Heraghty
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| |
Collapse
|
8
|
Maihoff F, Friess N, Hoiss B, Schmid‐Egger C, Kerner J, Neumayer J, Hopfenmüller S, Bässler C, Müller J, Classen A. Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Fabienne Maihoff
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| | - Nicolas Friess
- Faculty of Geography University of Marburg Marburg Germany
| | - Bernhard Hoiss
- Bayerische Akademie für Naturschutz und Landschaftspflege Laufen Germany
| | | | - Janika Kerner
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| | | | - Sebastian Hopfenmüller
- Institute of Evolutionary Ecology and Conservation Genomics University of Ulm Ulm Germany
| | - Claus Bässler
- Department of Conservation Biology, Institute for Ecology, Evolution and Diversity University of Frankfurt Frankfurt am Main Germany
- National Park Bavarian Forest Grafenau Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
- National Park Bavarian Forest Grafenau Germany
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| |
Collapse
|
9
|
Maharjan SK, Sterck FJ, Raes N, Zhao Y, Poorter L. Climate change induced elevational range shifts of Himalayan tree species. Biotropica 2022. [DOI: 10.1111/btp.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Surya Kumar Maharjan
- Forest Ecology and Forest Management Group Wageningen University and Research Wageningen The Netherlands
- Rupantaran Nepal Kathmandu Nepal
- Department of Silviculture and Forest Biology, Institute of Forestry Tribhuvan University Hetauda Nepal
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group Wageningen University and Research Wageningen The Netherlands
| | - Niels Raes
- NLBIF – Netherlands Biodiversity Information Facility Leiden The Netherlands
- Naturalis Biodiversity Center Leiden The Netherlands
| | - Yue Zhao
- Forest Ecology and Forest Management Group Wageningen University and Research Wageningen The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
10
|
Hariharan J, Buckley DH. Elevational Gradients Impose Dispersal Limitation on Streptomyces. Front Microbiol 2022; 13:856263. [PMID: 35592003 PMCID: PMC9113539 DOI: 10.3389/fmicb.2022.856263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Dispersal governs microbial biogeography, but the rates and mechanisms of dispersal remain poorly characterized for most microbial taxa. Dispersal limitation is driven by limits on dissemination and establishment, respectively. Elevation gradients create striking patterns of biogeography because they produce steep environmental gradients at small spatial scales, and these gradients offer a powerful tool to examine mechanisms of dispersal limitation. We focus on Streptomyces, a bacterial genus common to soil, by using a taxon-specific phylogenetic marker, the RNA polymerase-encoding rpoB gene. By targeting Streptomyces, we assess dispersal limitation at finer phylogenetic resolution than is possible using whole community analyses. We characterized Streptomyces diversity at local spatial scales (100 to 3,000 m) in two temperate forest sites located in the Adirondacks region of New York State: Woods Lake (<100 m elevation change), and Whiteface Mountain (>1,000 m elevation change). Beta diversity varied considerably at both locations, indicative of dispersal limitation acting at local spatial scales, but beta diversity was significantly higher at Whiteface Mountain. Beta diversity varied across elevation at Whiteface Mountain, being lowest at the mountain’s base. We show that Streptomyces taxa exhibit elevational preferences, and these preferences are phylogenetically conserved. These results indicate that habitat preferences influence Streptomyces biogeography and suggest that barriers to establishment structure Streptomyces communities at higher elevations. These data illustrate that Streptomyces biogeography is governed by dispersal limitation resulting from a complex mixture of stochastic and deterministic processes.
Collapse
Affiliation(s)
- Janani Hariharan
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Sponsler DB, Requier F, Kallnik K, Classen A, Maihoff F, Sieger J, Steffan-Dewenter I. Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts. Ecology 2022; 103:e3712. [PMID: 35363383 DOI: 10.1002/ecy.3712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee-flower interactions over three years along an 1400 m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β-diversity, and interaction β-diversity. While floral richness exhibited a mid-elevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species-level responses to elevation, with a clear separation between species preferring low vs. high elevations. Overall interaction β-diversity was mainly caused by strong turnover in the floral community, which exhibited a well-defined threshold of β-diversity rate at the tree line ecotone. Interaction β-diversity increased sharply at the upper extreme of the elevation gradient (1800-2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β-diversity occurring over the interval from low- to mid-elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize on high-elevation habitats may also experience significant direct effects of warming.
Collapse
Affiliation(s)
- Douglas B Sponsler
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Katharina Kallnik
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabienne Maihoff
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Sponsler D, Kallnik K, Requier F, Classen A, Maihoff AF, Sieger J, Steffan‐Dewenter I. Floral preferences of mountain bumble bees are constrained by functional traits but flexible through elevation and season. OIKOS 2021. [DOI: 10.1111/oik.08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Douglas Sponsler
- Univ. of Würzburg, Dept of Animal Ecology and Tropical Biology Würzburg Germany
| | - Katharina Kallnik
- Univ. of Würzburg, Dept of Animal Ecology and Tropical Biology Würzburg Germany
| | - Fabrice Requier
- Univ. Paris‐Saclay, Évolution, Génomes, Comportement et Écologie Gif‐sur‐Yvette France
| | - Alice Classen
- Univ. of Würzburg, Dept of Animal Ecology and Tropical Biology Würzburg Germany
| | - A. Fabienne Maihoff
- Univ. of Würzburg, Dept of Animal Ecology and Tropical Biology Würzburg Germany
| | | | | |
Collapse
|
13
|
Christmas MJ, Jones JC, Olsson A, Wallerman O, Bunikis I, Kierczak M, Whitley KM, Sullivan I, Geib JC, Miller-Struttmann NE, Webster MT. A genomic and morphometric analysis of alpine bumblebees: Ongoing reductions in tongue length but no clear genetic component. Mol Ecol 2021; 31:1111-1127. [PMID: 34837435 DOI: 10.1111/mec.16291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Over the last six decades, populations of the bumblebees Bombus sylvicola and Bombus balteatus in Colorado have experienced decreases in tongue length, a trait important for plant-pollinator mutualisms. It has been hypothesized that this observation reflects selection resulting from shifts in floral composition under climate change. Here we used morphometrics and population genomics to determine whether morphological change is ongoing, investigate the genetic basis of morphological variation, and analyse population structure in these populations. We generated a genome assembly of B. balteatus. We then analysed whole-genome sequencing data and morphometric measurements of 580 samples of both species from seven high-altitude localities. Out of 281 samples originally identified as B. sylvicola, 67 formed a separate genetic cluster comprising a newly-discovered cryptic species ("incognitus"). However, an absence of genetic structure within species suggests that gene flow is common between mountains. We found a significant decrease in tongue length between bees collected between 2012-2014 and in 2017, indicating that morphological shifts are ongoing. We did not discover any genetic associations with tongue length, but a SNP related to production of a proteolytic digestive enzyme was implicated in body size variation. We identified evidence of covariance between kinship and both tongue length and body size, which is suggestive of a genetic component of these traits, although it is possible that shared environmental effects between colonies are responsible. Our results provide evidence for ongoing modification of a morphological trait important for pollination and indicate that this trait probably has a complex genetic and environmental basis.
Collapse
Affiliation(s)
- Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia C Jones
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kaitlyn M Whitley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA.,U.S. Department of Agriculture, Agriculture Research Service, Charleston, South Carolina, USA
| | - Isabel Sullivan
- Department of Biology, Appalachian State University, Boone, North Carolina, USA.,Marine Estuarine Environmental Sciences, University of Maryland, College Park, Maryland, USA
| | - Jennifer C Geib
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | | | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Prestele R, Brown C, Polce C, Maes J, Whitehorn P. Large variability in response to projected climate and land-use changes among European bumblebee species. GLOBAL CHANGE BIOLOGY 2021; 27:4530-4545. [PMID: 34197031 DOI: 10.1111/gcb.15780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Bumblebees (Bombus ssp.) are among the most important wild pollinators, but many species have suffered from range declines. Land-use change, agricultural intensification, and the associated loss of habitat have been identified as drivers of the observed dynamics, amplifying pressures from a changing climate. However, these drivers are still underrepresented in continental-scale species distribution modeling. Here, we project the potential distribution of 47 European bumblebee species in 2050 and 2080 from existing European-scale distribution maps, based on a set of climate and land-use futures simulated through a regional integrated assessment model and consistent with the RCP-SSP scenario framework. We compare projections including (1) dynamic climate and constant land use (CLIM); (2) constant climate and dynamic land use (LU); and (3) dynamic climate and dynamic land use (COMB) to disentangle the effects of land use and climate change on future habitat suitability, providing the first rigorous continental-scale assessment of linked climate-land-use futures for bumblebees. We find that direct climate impacts, although variable across species, dominate responses for most species, especially under high-end climate change scenarios (up to 99% range loss). Land-use impacts are highly variable across species and scenarios, ranging from severe losses (up to 75% loss) to considerable gains (up to 68% gain) of suitable habitat extent. Rare species thereby tend to be disproportionally affected by both climate and land-use change. COMB projections reveal that land use may amplify, attenuate, or offset changes to suitable habitat extent expected from climate impact depending on species and scenario. Especially in low-end climate change scenarios, land use has the potential to become a game changer in determining the direction and magnitude of range changes, indicating substantial potential for targeted conservation management.
Collapse
Affiliation(s)
- Reinhard Prestele
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Calum Brown
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Chiara Polce
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Joachim Maes
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Penelope Whitehorn
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| |
Collapse
|
15
|
Maebe K, Hart AF, Marshall L, Vandamme P, Vereecken NJ, Michez D, Smagghe G. Bumblebee resilience to climate change, through plastic and adaptive responses. GLOBAL CHANGE BIOLOGY 2021; 27:4223-4237. [PMID: 34118096 DOI: 10.1111/gcb.15751] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Bumblebees are ubiquitous, cold-adapted eusocial bees found worldwide from subarctic to tropical regions of the world. They are key pollinators in most temperate and boreal ecosystems, and both wild and managed populations are significant contributors to agricultural pollination services. Despite their broad ecological niche at the genus level, bumblebee species are threatened by climate change, particularly by rising average temperatures, intensifying seasonality and the increasing frequency of extreme weather events. While some temperature extremes may be offset at the individual or colony level through temperature regulation, most bumblebees are expected to exhibit specific plastic responses, selection in various key traits, and/or range contractions under even the mildest climate change. In this review, we provide an in-depth and up-to-date review on the various ways by which bumblebees overcome the threats associated with current and future global change. We use examples relevant to the fields of bumblebee physiology, morphology, behaviour, phenology, and dispersal to illustrate and discuss the contours of this new theoretical framework. Furthermore, we speculate on the extent to which adaptive responses to climate change may be influenced by bumblebees' capacity to disperse and track suitable climate conditions. Closing the knowledge gap and improving our understanding of bumblebees' adaptability or avoidance behaviour to different climatic circumstances will be necessary to improve current species climate response models. These models are essential to make correct predictions of species vulnerability in the face of future climate change and human-induced environmental changes to unfold appropriate future conservation strategies.
Collapse
Affiliation(s)
- Kevin Maebe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alex F Hart
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leon Marshall
- Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Ghisbain G, Gérard M, Wood TJ, Hines HM, Michez D. Expanding insect pollinators in the Anthropocene. Biol Rev Camb Philos Soc 2021; 96:2755-2770. [PMID: 34288353 PMCID: PMC9292488 DOI: 10.1111/brv.12777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023]
Abstract
Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species extirpations and extinctions. Whilst negative population trends within this functional group have understandably received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adaptation to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche specialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pollinator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly species specific and context dependent, rendering generalizations of 'winning traits' complicated. This work illustrates the increasing need to consider expansion and its numerous consequences as significant facets of global changes and encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural ecosystems.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| | - Maxence Gérard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium.,Department of Zoology, Division of Functional Morphology, INSECT Lab, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 11418, Sweden
| | - Thomas J Wood
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, U.S.A.,Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| |
Collapse
|
17
|
Fourcade Y, Åström S, Öckinger E. Decline of parasitic and habitat-specialist species drives taxonomic, phylogenetic and functional homogenization of sub-alpine bumblebee communities. Oecologia 2021; 196:905-917. [PMID: 34129123 DOI: 10.1007/s00442-021-04970-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
The ongoing biodiversity crisis is characterised not only by an elevated extinction rate but also can lead to an increasing similarity of species assemblages. This is an issue of major concern, as it can reduce ecosystem resilience and functionality. Changes in the composition of pollinator communities have mainly been described in intensive agricultural lowland areas. In this context, using a replicated survey of historical and recent bumblebee diversity, we aimed here to test how documented changes in climate and land use influenced the potential homogenization of sub-alpine bumblebee communities in southern Norway. We assessed the change in community composition in terms of taxonomic, phylogenetic and functional (β-)diversity, and estimated the impact of various species traits in probabilities of species gains and losses. Overall, we found a strong reduction in functional diversity, but no change in phylogenetic diversity over time. The β-diversity decreased, especially at high elevations, and this pattern was consistent for taxonomic, phylogenetic and functional β-diversity. The spatial distribution, measured as the average site occupancy, decreased in habitat-specialist species. This was explained by both a higher risk of species loss and a lower probability of species gain for habitat-specialist and parasitic species than for generalist and social species. These findings demonstrate that a narrow niche breadth may contribute to a higher extinction risk in bumblebee species. This non-random impact of disturbance on species may lead to large-scale biotic homogenisation of communities, a pattern that can be detected by investigating biodiversity changes at different scales and across its multiple facets.
Collapse
Affiliation(s)
- Yoan Fourcade
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007, Uppsala, Sweden. .,Univ Paris Est Creteil, CNRS, IRD, INRAE, Sorbonne Université, Institut d'écologie et des sciences de l'environnement, IEES, 94010, Creteil, France.
| | - Sandra Åström
- Norwegian Institute for Nature Research (NINA), Torgarden, Box 5685, 7485, Trondheim, Norway
| | - Erik Öckinger
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007, Uppsala, Sweden
| |
Collapse
|
18
|
Kelemen EP, Rehan SM. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 2021; 14:1485-1496. [PMID: 34178099 PMCID: PMC8210791 DOI: 10.1111/eva.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast-flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land-use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next-generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species' survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life-history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.
Collapse
|
19
|
Taheri S, Naimi B, Rahbek C, Araújo MB. Improvements in reports of species redistribution under climate change are required. SCIENCE ADVANCES 2021; 7:eabe1110. [PMID: 33827813 PMCID: PMC8026129 DOI: 10.1126/sciadv.abe1110] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Studies have documented climate change-induced shifts in species distributions but uncertainties associated with data and methods are typically unexplored. We reviewed 240 reports of climate-related species-range shifts and classified them based on three criteria. We ask whether observed distributional shifts are compared against random expectations, whether multicausal factors are examined on equal footing, and whether studies provide sufficient documentation to enable replication. We found that only ~12.1% of studies compare distributional shifts across multiple directions, ~1.6% distinguish observed patterns from random expectations, and ~19.66% examine multicausal factors. Last, ~75.5% of studies report sufficient data and results to allow replication. We show that despite gradual improvements over time, there is scope for raising standards in data and methods within reports of climate-change induced shifts in species distribution. Accurate reporting is important because policy responses depend on them. Flawed assessments can fuel criticism and divert scarce resources for biodiversity to competing priorities.
Collapse
Affiliation(s)
- Shirin Taheri
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Calle Jose Gutierrez Abascal, 2, 28006 Madrid, Spain.
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles 28933, Spain
| | - Babak Naimi
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense M, Denmark
- Institute of Ecology, Peking University, Beijing 100871, China
| | - Miguel B Araújo
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Calle Jose Gutierrez Abascal, 2, 28006 Madrid, Spain.
- Rui Nabeiro Biodiversity Chair, MED Institute, University of Évora, Largo dos Colegiais, 7000 Évora, Portugal
| |
Collapse
|