1
|
Liu M, Qiao G, Wang Y, Liu S, Wang X, Yue Y, Peng S. Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics. Int J Mol Sci 2024; 25:10924. [PMID: 39456707 PMCID: PMC11507341 DOI: 10.3390/ijms252010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The large yellow croaker (Larimichthys crocea) is an important economic fish in China. However, intensive farming practices, such as high stocking densities, suboptimal water quality, and imbalanced nutrition, have led to a decline in muscle quality. Muscle elasticity is a key texture property influencing muscle quality. Herein, transcriptomic and metabolomic analyses were performed on four groups: male high muscle elasticity (MEHM), female high muscle elasticity (MEHF), male low muscle elasticity (MELM), and female low muscle elasticity (MELF), to explore the molecular regulation underlying muscle elasticity in the large yellow croaker. Transcriptomics identified 2594 differentially expressed genes (DEGs) across the four groups, while metabolomics revealed 969 differentially expressed metabolites (DEMs). Association analysis indicated that the valine, leucine, and isoleucine biosynthesis pathways were significantly enriched between the MELF and MEHF groups; 2-Oxoisovalerate and L-Valine were DEMs; and the gene encoding L-threonine ammonia-lyase was a DEG. In the MELM and MEHM groups, pathways such as arginine biosynthesis; arginine and proline metabolism; and valine, leucine, and isoleucine degradation were significantly enriched. 4-guanidinobutanoate, L-aspartate, N-acetylornithine, and L-leucine were among the DEMs, while the DEGs included glul, gls, srm, hmgcs, and aacs. These findings provide insights into the molecular mechanisms controlling muscle elasticity, representing a theoretical foundation to breed high-quality large yellow croakers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiming Peng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
2
|
Miettinen A, Romakkaniemi A, Dannewitz J, Pakarinen T, Palm S, Persson L, Östergren J, Primmer CR, Pritchard VL. Temporal allele frequency changes in large-effect loci reveal potential fishing impacts on salmon life-history diversity. Evol Appl 2024; 17:e13690. [PMID: 38681510 PMCID: PMC11046039 DOI: 10.1111/eva.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Fishing has the potential to influence the life-history traits of exploited populations. However, our understanding of how fisheries can induce evolutionary genetic changes remains incomplete. The discovery of large-effect loci linked with ecologically important life-history traits, such as age at maturity in Atlantic salmon (Salmo salar), provides an opportunity to study the impacts of temporally varying fishing pressures on these traits. A 93-year archive of fish scales from wild Atlantic salmon catches from the northern Baltic Sea region allowed us to monitor variation in adaptive genetic diversity linked with age at maturity of wild Atlantic salmon populations. The dataset consisted of samples from both commercial and recreational fisheries that target salmon on their spawning migration. Using a genotyping-by-sequencing approach (GT-seq), we discovered strong within-season allele frequency changes at the vgll3 locus linked with Atlantic salmon age at maturity: fishing in the early season preferentially targeted the vgll3 variant linked with older maturation. We also found within-season temporal variation in catch proportions of different wild Atlantic salmon subpopulations. Therefore, selective pressures of harvesting may vary depending on the seasonal timing of fishing, which has the potential to cause evolutionary changes in key life-history traits and their diversity. This knowledge can be used to guide fisheries management to reduce the effects of fishing practices on salmon life-history diversity. Thus, this study provides a tangible example of using genomic approaches to infer, monitor and help mitigate human impacts on adaptively important genetic variation in nature.
Collapse
Affiliation(s)
- Antti Miettinen
- Organismal & Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | | | - Johan Dannewitz
- Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | | | - Stefan Palm
- Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | - Lo Persson
- Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Johan Östergren
- Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | - Craig R. Primmer
- Organismal & Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Victoria L. Pritchard
- Institute for Biodiversity & Freshwater ConservationUniversity of the Highlands & IslandsInvernessUK
| |
Collapse
|
3
|
Kurland S, Ryman N, Hössjer O, Laikre L. Effects of subpopulation extinction on effective size (Ne) of metapopulations. CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AbstractPopulation extinction is ubiquitous in all taxa. Such extirpations can reduce intraspecific diversity, but the extent to which genetic diversity of surviving populations are affected remains largely unclear. A key concept in this context is the effective population size (Ne), which quantifies the rate at which genetic diversity within populations is lost. Ne was developed for single, isolated populations while many natural populations are instead connected to other populations via gene flow. Recent analytical approaches and software permit modelling of Ne of interconnected populations (metapopulations). Here, we apply such tools to investigate how extinction of subpopulations affects Ne of the metapopulation (NeMeta) and of separate surviving subpopulations (NeRx) under different rates and patterns of genetic exchange between subpopulations. We assess extinction effects before and at migration-drift equilibrium. We find that the effect of extinction on NeMeta increases with reduced connectivity, suggesting that stepping stone models of migration are more impacted than island-migration models when the same number of subpopulations are lost. Furthermore, in stepping stone models, after extinction and before a new equilibrium has been reached, NeRx can vary drastically among surviving subpopulations and depends on their initial spatial position relative to extinct ones. Our results demonstrate that extinctions can have far more complex effects on the retention of intraspecific diversity than typically recognized. Metapopulation dynamics need heightened consideration in sustainable management and conservation, e.g., in monitoring genetic diversity, and are relevant to a wide range of species in the ongoing extinction crisis.
Collapse
|
4
|
Conservation genetics of the tropical gar (Atractosteus tropicus, Lepisosteidae). CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Andersson A, Karlsson S, Ryman N, Laikre L. Monitoring genetic diversity with new indicators applied to an alpine freshwater top predator. Mol Ecol 2022; 31:6422-6439. [PMID: 36170147 PMCID: PMC10091952 DOI: 10.1111/mec.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
Genetic diversity is the basis for population adaptation and long-term survival, yet rarely considered in biodiversity monitoring. One key issue is the need for useful and straightforward indicators of genetic diversity. We monitored genetic diversity over 40 years (1970-2010) in metapopulations of brown trout (Salmo trutta) inhabiting 27 small mountain lakes representing 10 lake systems in central Sweden using >1200 fish per time point. We tested six newly proposed indicators; three were designed for broad, international use in the UN Convention on Biological Diversity (CBD) and are currently applied in several countries. The other three were recently elaborated for national use by a Swedish science-management effort and applied for the first time here. The Swedish indicators use molecular genetic data to monitor genetic diversity within and between populations (indicators ΔH and ΔFST , respectively) and assess the effective population size (Ne -indicator). We identified 29 genetically distinct populations, all retained over time. Twelve of the 27 lakes harboured more than one population indicating that brown trout biodiversity hidden as cryptic, sympatric populations are more common than recognized. The Ne indicator showed values below the threshold (Ne ≤ 500) in 20 populations with five showing Ne < 100. Statistically significant genetic diversity reductions occurred in several populations. Metapopulation structure appears to buffer against diversity loss; applying the indicators to metapopulations suggest mostly acceptable rates of change in all but one system. The CBD indicators agreed with the Swedish ones but provided less detail. All these indicators are appropriate for managers to initiate monitoring of genetic biodiversity.
Collapse
Affiliation(s)
- Anastasia Andersson
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Nils Ryman
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Jang JE, Kim JK, Yoon S, Lee H, Lee W, Kang JH, Lee HJ. Low genetic diversity, local-scale structure, and distinct genetic integrity of Korean chum salmon ( Oncorhynchus keta) at the species range margin suggest a priority for conservation efforts. Evol Appl 2022; 15:2142-2157. [PMID: 36540643 PMCID: PMC9753833 DOI: 10.1111/eva.13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chum salmon (Oncorhynchus keta) is an ecologically and economically important species widely distributed across the North Pacific Ocean. However, the population size of this fishery resource has declined globally. Identifying genetic integrity, diversity and structure, and phylogenetic relationships of wild populations of O. keta over an entire species' range is central for developing its effective conservation and management plans. Nevertheless, chum salmon from the Korean Peninsula, which are comprised of its southwestern range margins, have been overlooked. By using mtDNA control region and 10 microsatellite loci, we here assessed the genetic diversity and structure for 16 populations, including 10 wild and six hatchery populations, encompassing the species entire geographic range in South Korea. The analyses showed that genetic diversity is significantly higher for wild than for hatchery populations. Both marker sets revealed significant genetic differentiation between some local populations. Comparisons of six wild and their respective hatchery populations indicated that allele/haplotype frequencies considerably differ, perhaps due to a strong founder effect and/or homogenizing of hatchery populations for stocking practice. Despite its single admixed gene pool for the Korean chum salmon, some local populations housing their own unique lineages should be accorded with a high priority to safeguard their genetic integrities. The results of our comparative analyses of the Korean population with other North Pacific chum salmons (inhabiting regions of Japan, Russia, and North America) revealed a lower diversity but higher contribution to the overall species-level genetic diversity, and also its unique genetic integrity. These findings advocate for the evolutionary significance of the Korean population for species-level conservation.
Collapse
Affiliation(s)
- Ji Eun Jang
- Molecular Ecology and Evolution Laboratory, Department of Biological ScienceSangji UniversityWonjuSouth Korea
| | - Ju Kyoung Kim
- Inland Aquatic Living Resources CenterKorea Fisheries Resources Agency (FIRA)YangyangSouth Korea
| | - Seung‐Min Yoon
- Gyeongsangbuk‐do Freshwater Fish Research CenterUljinSouth Korea
| | - Hwang‐Goo Lee
- Animal Ecology Laboratory, Department of Biological ScienceSangji UniversityWonjuSouth Korea
| | - Wan‐Ok Lee
- Korea Native Animal Resources Utilization Convergence Research InstituteSoonchunhyang UniversityAsanSouth Korea
| | - Ji Hyoun Kang
- Korean Entomological InstituteKorea UniversitySeoulSouth Korea
| | - Hyuk Je Lee
- Molecular Ecology and Evolution Laboratory, Department of Biological ScienceSangji UniversityWonjuSouth Korea
| |
Collapse
|
7
|
Nygaard M, Kopatz A, Speed JMD, Martin MD, Prestø T, Kleven O, Bendiksby M. Spatiotemporal monitoring of the rare northern dragonhead ( Dracocephalum ruyschiana, Lamiaceae) - SNP genotyping and environmental niche modeling herbarium specimens. Ecol Evol 2022; 12:e9187. [PMID: 35983172 PMCID: PMC9374565 DOI: 10.1002/ece3.9187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/31/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
The species we have studied the spatiotemporal genetic change in the northern dragonhead, a plant species that has experienced a drastic population decline and habitat loss in Europe. We have added a temporal perspective to the monitoring of northern dragonhead in Norway by genotyping herbarium specimens up to 200 years old. We have also assessed whether northern dragonhead has achieved its potential distribution in Norway. To obtain the genotype data from 130 herbarium specimens collected from 1820 to 2008, mainly from Norway (83) but also beyond (47), we applied a microfluidic array consisting of 96 SNP markers. To assess temporal genetic change, we compared our new genotype data with existing data from modern samples. We used sample metadata and observational records to model the species' environmental niche and potential distribution in Norway. Our results show that the SNP array successfully genotyped all included herbarium specimens. Hence, with the appropriate design procedures, the SNP array technology appears highly promising for genotyping old herbarium specimens. The captured genetic diversity correlates negatively with distance from Norway. The historical-modern comparisons reveal similar genetic structure and diversity across space and limited genetic change through time in Norway, providing no signs of any regional bottleneck (i.e., spatiotemporal stasis). The regional areas in Norway have remained genetically divergent, however, both from each other and more so from populations outside of Norway, rendering continued protection of the species in Norway relevant. The ENM results suggest that northern dragonhead has not fully achieved its potential distribution in Norway and corroborate that the species is anchored in warmer and drier habitats.
Collapse
Affiliation(s)
- Malene Nygaard
- NTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
- Natural History Museum and Botanical GardenUniversity of AgderKristiansandNorway
| | | | - James M. D. Speed
- NTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
| | - Michael D. Martin
- NTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
| | - Tommy Prestø
- NTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
| | | | - Mika Bendiksby
- NTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
- Natural History MuseumUniversity of OsloNorway
| |
Collapse
|
8
|
Setzke C, Wong C, Russello MA. Genotyping-in-Thousands by sequencing of archival fish scales reveals maintenance of genetic variation following a severe demographic contraction in kokanee salmon. Sci Rep 2021; 11:22798. [PMID: 34815428 PMCID: PMC8611073 DOI: 10.1038/s41598-021-01958-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Historical DNA analysis of archival samples has added new dimensions to population genetic studies, enabling spatiotemporal approaches for reconstructing population history and informing conservation management. Here we tested the efficacy of Genotyping-in-Thousands by sequencing (GT-seq) for collecting targeted single nucleotide polymorphism genotypic data from archival scale samples, and applied this approach to a study of kokanee salmon (Oncorhynchus nerka) in Kluane National Park and Reserve (KNPR; Yukon, Canada) that underwent a severe 12-year population decline followed by a rapid rebound. We genotyped archival scales sampled pre-crash and contemporary fin clips collected post-crash, revealing high coverage (> 90% average genotyping across all individuals) and low genotyping error (< 0.01% within-libraries, 0.60% among-libraries) despite the relatively poor quality of recovered DNA. We observed slight decreases in expected heterozygosity, allelic diversity, and effective population size post-crash, but none were significant, suggesting genetic diversity was retained despite the severe demographic contraction. Genotypic data also revealed the genetic distinctiveness of a now extirpated population just outside of KNPR, revealing biodiversity loss at the northern edge of the species distribution. More broadly, we demonstrated GT-seq as a valuable tool for collecting genome-wide data from archival samples to address basic questions in ecology and evolution, and inform applied research in wildlife conservation and fisheries management.
Collapse
Affiliation(s)
- Christopher Setzke
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Carmen Wong
- Parks Canada Yukon Field Unit, Suite 205 - 300 Main St, Whitehorse, YT, Y1A 2B5, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|