1
|
Shameer KS, Hardy IC. Host-parasitoid trophic webs in complex agricultural systems. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101253. [PMID: 39153528 DOI: 10.1016/j.cois.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The composition and dynamics of ecological communities are complex because of the presence of large numbers of organisms, belonging to many different species, each with their own evolutionary history, and their numerous interactions. The construction and analysis of trophic webs summarize interactions across trophic levels and link community structure to properties such as ecosystem services. We focus on agroecological communities, which may be simpler than natural communities but nonetheless present considerable challenges to describe and understand. We review the characteristics and study of communities comprised of plants, phytophagous insects, and insect parasitoids with particular regard to the maintenance of sustainable agroecological communities and ecosystem services, especially biological pest control. We are constrained to largely overlook other members of these communities, such as hyperparasitoids, predators, parasites, and microbes. We draw chiefly on recent literature while acknowledging the importance of many advances made during the immediately preceding decades. Trophic web construction and analysis can greatly improve the understanding of the role and impact of herbivores and natural enemies in agroecological communities and the various species interactions, such as apparent competition, which assists biocontrol strategies. The study of trophic webs also helps in predicting community ecology consequences of externally driven changes to agroecosystems.
Collapse
Affiliation(s)
- K S Shameer
- Insect Ecology and Ethology Laboratory, Department of Zoology, University of Calicut, Calicut University P.O., Malappuram, Kerala 673635, India; Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Finland.
| | - Ian Cw Hardy
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Finland.
| |
Collapse
|
2
|
Daouti E, Neidel V, Carbonne B, Vašková H, Traugott M, Wallinger C, Bommarco R, Feit B, Bohan DA, Saska P, Skuhrovec J, Vasconcelos S, Petit S, van der Werf W, Jonsson M. Functional redundancy of weed seed predation is reduced by intensified agriculture. Ecol Lett 2024; 27:e14411. [PMID: 38577993 DOI: 10.1111/ele.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Intensified agriculture, a driver of biodiversity loss, can diminish ecosystem functions and their stability. Biodiversity can increase functional redundancy and is expected to stabilize ecosystem functions. Few studies, however, have explored how agricultural intensity affects functional redundancy and its link with ecosystem function stability. Here, within a continental-wide study, we assess how functional redundancy of seed predation is affected by agricultural intensity and landscape simplification. By combining carabid abundances with molecular gut content data, functional redundancy of seed predation was quantified for 65 weed genera across 60 fields in four European countries. Across weed genera, functional redundancy was reduced with high field management intensity and simplified crop rotations. Moreover, functional redundancy increased the spatial stability of weed seed predation at the field scale. We found that ecosystem functions are vulnerable to disturbances in intensively managed agroecosystems, providing empirical evidence of the importance of biodiversity for stable ecosystem functions across space.
Collapse
Affiliation(s)
- Eirini Daouti
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Veronika Neidel
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | | | - Hana Vašková
- Functional Diversity in Agro-Ecosystems, Crop Research Institute, Praha 6, Ruzyně, Czech Republic
| | - Michael Traugott
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Corinna Wallinger
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Benjamin Feit
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David A Bohan
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pavel Saska
- Functional Diversity in Agro-Ecosystems, Crop Research Institute, Praha 6, Ruzyně, Czech Republic
| | - Jiří Skuhrovec
- Functional Diversity in Agro-Ecosystems, Crop Research Institute, Praha 6, Ruzyně, Czech Republic
| | - Sasha Vasconcelos
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sandrine Petit
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Mattias Jonsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Miyashita T, Hayashi S, Natsume K, Taki H. Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination. Sci Rep 2023; 13:3099. [PMID: 36813829 PMCID: PMC9946946 DOI: 10.1038/s41598-023-29977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Response diversity to environmental change among species is important for the maintenance of ecosystem services, but response diversity to changes in multiple environmental parameters is largely unexplored. Here, we examined how insect visitations to buckwheat flowers differ among species groups in response to changes in multiple weather variables and landscape structures. We found differences in responses to changes in weather conditions among insect taxonomic groups visiting buckwheat flowers. Beetles, butterflies, and wasps were more active in sunny and/or high-temperature conditions, whereas ants and non-syrphid flies showed the opposite pattern. When looking closely, the different response pattern among insect groups was itself shown to be different from one weather variable to another. For instance, large insects were responsive to temperatures more than small insects while smaller insects were responsive to sunshine duration more than large insects. Furthermore, responses to weather conditions differed between large and small insects, which agreed with the expectation that optimal temperature for insect activity depends on body size. Responses to spatial variables also differed; large insects were more abundant in fields with surrounding forests and mosaic habitats, whereas small insects were not. We suggest that response diversity at multiple spatial and temporal niche dimensions should be a focus of future studies of the biodiversity-ecosystem service relationships.
Collapse
Affiliation(s)
- Tadashi Miyashita
- Laboratory of Biodiversity Science, Faculty of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Shouta Hayashi
- Laboratory of Biodiversity Science, Faculty of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kae Natsume
- Laboratory of Biodiversity Science, Faculty of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hisatomo Taki
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
4
|
Yang X, Zhao S, Liu B, Gao Y, Hu C, Li W, Yang Y, Li G, Wang L, Yang X, Yuan H, Liu J, Liu D, Shen X, Wyckhuys KAG, Lu Y, Wu K. Bt maize can provide non-chemical pest control and enhance food safety in China. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:391-404. [PMID: 36345605 PMCID: PMC9884019 DOI: 10.1111/pbi.13960] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/26/2023]
Abstract
China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9-97.3%, avoid yield loss by 16.4-21.3% (range -11.9-99.2%) and lower mycotoxin contamination by 85.5-95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.
Collapse
Affiliation(s)
- Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chaoxing Hu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous RegionInstitute of Entomology, Guizhou UniversityGuiyangChina
| | - Wenjing Li
- Institute of Plant Protection and Soil FertilityHubei Academy of Agricultural SciencesWuhanChina
| | - Yizhong Yang
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Guoping Li
- Institute of Plant ProtectionHenan Academy of Agricultural SciencesZhengzhouChina
| | - Lili Wang
- Yantai Academy of Agricultural SciencesYantaiChina
| | - Xueqing Yang
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Haibin Yuan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Jian Liu
- College of AgricultureNortheast Agricultural UniversityHarbinChina
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Agricultural Information InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xiujing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Fujian Agriculture and Forestry UniversityFuzhouChina
- University of QueenslandBrisbaneQueenslandAustralia
- Chrysalis ConsultingHanoiVietnam
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Chang CC, Todd PA. Reduced predation pressure as a potential driver of prey diversity and abundance in complex habitats. NPJ BIODIVERSITY 2023; 2:1. [PMID: 39242650 PMCID: PMC11332019 DOI: 10.1038/s44185-022-00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 12/02/2022] [Indexed: 09/09/2024]
Abstract
Habitat complexity is positively associated with biodiversity and abundance and is often a focus of habitat restoration programmes, however, the mechanisms underlying these relationships are not yet resolved. In this Perspective, we postulate that reduced predation pressure in complex habitats could contribute to increased prey diversity and abundance. Based on a systematic review and meta-analysis of experimental studies, reduced predation pressure in complex habitats is consistent across freshwater and marine ecosystems, field and laboratory experiments, different hunting modes of predators, and different numbers of prey species. However, the effects are less clear in terrestrial ecosystems. Easing predation pressure, in conjunction with increased resources for prey, could help explain the high biodiversity and abundance found in complex habitats. This knowledge can be used in restoration and ecological engineering projects to maximise species diversity and abundance gains.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Peter A Todd
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
6
|
Wyckhuys KA, Zhang W, Colmenarez YC, Simelton E, Sander BO, Lu Y. Tritrophic defenses as a central pivot of low-emission, pest-suppressive farming systems. CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY 2022; 58:101208. [PMID: 36320406 PMCID: PMC9611972 DOI: 10.1016/j.cosust.2022.101208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic has spotlighted the intricate connections between human and planetary health. Given that pesticide-centered crop protection degrades ecological resilience and (in-)directly harms human health, the adoption of ecologically sound, biodiversity-driven alternatives is imperative. In this Synthesis paper, we illuminate how ecological forces can be manipulated to bolster 'tritrophic defenses' against crop pests, pathogens, and weeds. Three distinct, yet mutually compatible approaches (habitat-mediated, breeding-dependent, and epigenetic tactics) can be deployed at different organizational levels, that is, from an individual seed to entire farming landscapes. Biodiversity can be harnessed for crop protection through ecological infrastructures, diversification tactics, and reconstituted soil health. Crop diversification is ideally guided by interorganismal interplay and plant-soil feedbacks, entailing resistant cultivars, rotation schemes, or multicrop arrangements. Rewarding opportunities also exist to prime plants for enhanced immunity or indirect defenses. As tritrophic defenses spawn multiple societal cobenefits, they could become core features of healthy, climate-resilient, and low-carbon food systems.
Collapse
Affiliation(s)
- Kris Ag Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Queensland, Brisbane, Australia
- Fujian Agriculture and Forestry University, Fuzhou, China
- Chrysalis Consulting, Hanoi, Viet Nam
| | - Wei Zhang
- International Food Policy Research Institute (IFPRI-CGIAR), Washington DC, USA
| | | | | | - Bjorn O Sander
- International Rice Research Institute (IRRI-CGIAR), Hanoi, Viet Nam
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proc Natl Acad Sci U S A 2022; 119:e2203385119. [PMID: 36095174 PMCID: PMC9499564 DOI: 10.1073/pnas.2203385119] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Agricultural land, the world’s largest human-managed ecosystem, forms the matrix that connects remnant and fragmented patches of natural vegetation where nondomesticated biodiversity struggles to survive. Increasing the resources that this matrix can offer to biodiversity is critical to halting biodiversity loss. Our comprehensive meta-analysis demonstrates the positive and significant effect on biodiversity of increasing landscape complexity in agricultural lands. We found more biodiversity in complex landscapes, potentially contributing to agriculture production, ecosystem resilience, and human well-being. Current biodiversity conservation strategies tend to focus on natural ecosystems, often ignoring opportunities to boost biodiversity in agricultural landscapes. Our findings provide a strong scientific evidence base for synergistically managing agriculture at the landscape level for biodiversity conservation and sustainable production. Managing agricultural landscapes to support biodiversity conservation requires profound structural changes worldwide. Often, discussions are centered on management at the field level. However, a wide and growing body of evidence calls for zooming out and targeting agricultural policies, research, and interventions at the landscape level to halt and reverse the decline in biodiversity, increase biodiversity-mediated ecosystem services in agricultural landscapes, and improve the resilience and adaptability of these ecosystems. We conducted the most comprehensive assessment to date on landscape complexity effects on nondomesticated terrestrial biodiversity through a meta-analysis of 1,134 effect sizes from 157 peer-reviewed articles. Increasing landscape complexity through changes in composition, configuration, or heterogeneity significatively and positively affects biodiversity. More complex landscapes host more biodiversity (richness, abundance, and evenness) with potential benefits to sustainable agricultural production and conservation, and effects are likely underestimated. The few articles that assessed the combined contribution of linear (e.g., hedgerows) and areal (e.g., woodlots) elements resulted in a near-doubling of the effect sizes (i.e., biodiversity level) compared to the dominant number of studies measuring these elements separately. Similarly, positive effects on biodiversity are stronger in articles monitoring biodiversity for at least 2 y compared to the dominant 1-y monitoring efforts. Besides, positive and stronger effects exist when monitoring occurs in nonoverlapping landscapes, highlighting the need for long-term and robustly designed monitoring efforts. Living in harmony with nature will require shifting paradigms toward valuing and promoting multifunctional agriculture at the farm and landscape levels with a research agenda that untangles complex agricultural landscapes’ contributions to people and nature under current and future conditions.
Collapse
|
8
|
Monticelli LS, Bishop J, Desneux N, Gurr GM, Jaworski CC, McLean AH, Thomine E, Vanbergen AJ. Multiple global change impacts on parasitism and biocontrol services in future agricultural landscapes. ADV ECOL RES 2021. [DOI: 10.1016/bs.aecr.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|