1
|
Licht M, Burns AL, Pacher K, Krause S, Bartashevich P, Romanczuk P, Hansen MJ, Then AY, Krause J. Sailfish generate foraging opportunities for seabirds in multi-species predator aggregations. Biol Lett 2024; 20:20240177. [PMID: 38982849 PMCID: PMC11252846 DOI: 10.1098/rsbl.2024.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
While various marine predators form associations, the most commonly studied are those between subsurface predators and seabirds, with gulls, shearwaters or terns frequently co-occurring with dolphins, billfish or tuna. However, the mechanisms underlying these associations remain poorly understood. Three hypotheses have been proposed to explain the prevalence of these associations: (1) subsurface predators herd prey to the surface and make prey accessible to birds, (2) subsurface predators damage prey close to the surface and thereby provide food scraps to birds, and (3) attacks of underwater predators lower the cohesion of prey groups and thereby their collective defences making the prey easier to be captured by birds. Using drone footage, we investigated the interaction between Indo-Pacific sailfish (Istiophorus platypterus) and terns (Onychoprion sp.) preying on schooling fish off the eastern coast of the Malaysian peninsula. Through spatio-temporal analysis of the hunting behaviour of the two predatory species and direct measures of prey cohesion we showed that terns attacked when school cohesion was low, and that this decrease in cohesion was frequently caused by sailfish attacks. Therefore, we propose that sailfish created a by-product benefit for the bird species, lending support to the hypothesis that lowering cohesion can facilitate associations between subsurface predators and seabirds.
Collapse
Affiliation(s)
- M. Licht
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
- Cluster of Excellence ‘Science of Intelligence’, Berlin, Germany, Marchstr. 23, Berlin 10587, Germany
| | - A. L. Burns
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
- Cluster of Excellence ‘Science of Intelligence’, Berlin, Germany, Marchstr. 23, Berlin 10587, Germany
- Department Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - K. Pacher
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
- Department Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - S. Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck 23562, Germany
| | - P. Bartashevich
- Cluster of Excellence ‘Science of Intelligence’, Berlin, Germany, Marchstr. 23, Berlin 10587, Germany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - P. Romanczuk
- Cluster of Excellence ‘Science of Intelligence’, Berlin, Germany, Marchstr. 23, Berlin 10587, Germany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - M. J. Hansen
- Department Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - A. Y. Then
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - J. Krause
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
- Cluster of Excellence ‘Science of Intelligence’, Berlin, Germany, Marchstr. 23, Berlin 10587, Germany
- Department Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| |
Collapse
|
2
|
Padget RFB, Fawcett TW, Darden SK. Guppies in large groups cooperate more frequently in an experimental test of the group size paradox. Proc Biol Sci 2023; 290:20230790. [PMID: 37434522 PMCID: PMC10336388 DOI: 10.1098/rspb.2023.0790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
The volunteer's dilemma, in which a single individual is required to produce a public good, predicts that individuals in larger groups will cooperate less frequently. Mechanistically, this could result from trade-offs between costs associated with volunteering and costs incurred if the public good is not produced (nobody volunteers). During predator inspection, one major contributor to the cost of volunteering is likely increased probability of predation; however, a predator also poses a risk to all individuals if nobody inspects. We tested the prediction that guppies in larger groups will inspect a predator less than those in smaller groups. We also predicted that individuals in larger groups would perceive less threat from the predator stimulus because of the protective benefits of larger groups (e.g. dilution). Contrary to prediction, we found that individuals in large groups inspected more frequently than those in smaller groups, but (as predicted) spent less time in refuges. There was evidence that individuals in intermediate-sized groups made fewest inspections and spent most time in refuges, suggesting that any link between group size, risk and cooperation is not driven by simple dilution. Extensions of theoretical models that capture these dynamics will likely be broadly applicable to risky cooperative behaviour.
Collapse
Affiliation(s)
- Rebecca F. B. Padget
- Centre for Research in Animal Behaviour, Department of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Tim W. Fawcett
- Centre for Research in Animal Behaviour, Department of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Safi K. Darden
- Centre for Research in Animal Behaviour, Department of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Gray L, Webster MM. False alarms and information transmission in grouping animals. Biol Rev Camb Philos Soc 2023; 98:833-848. [PMID: 36653332 DOI: 10.1111/brv.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
A key benefit of grouping in prey species is access to social information, including information about the presence of predators. Larger groups of prey animals respond both sooner and at greater distances from predators, increasing the likelihood that group members will successfully avoid capture. However, identifying predators in complex environments is a difficult task, and false alarms (alarm behaviours without genuine threat) appear surprisingly frequent across a range of taxa including insects, amphibians, fish, mammals, and birds. In some bird flocks, false alarms have been recorded to substantially outnumber true alarms. False alarms can be costly in terms of both the energetic costs of producing alarm behaviours as well as lost opportunity costs (e.g. abandoning a feeding patch which was in fact safe, losing sleep if an animal is resting/roosting, or losing mating opportunities). Models have shown that false alarms may be a substantial but underappreciated cost of group living, introducing an inherent risk to using social information and a vulnerability to the propagation of false information. This review will focus on false alarms, introducing a two-stage framework to categorise the different factors hypothesised to influence the propensity of animal groups to produce false alarms. A number of factors may affect false alarm rate, and this new framework splits these factors into two core processing stages: (i) individual perception and response; and (ii) group processing of predator information. In the first stage, individuals in the group monitor the environment for predator cues and respond. The factors highlighted in this stage influence the likelihood that an individual will misclassify stimuli and produce a false alarm (e.g. lower light levels can make predator identification more difficult and false alarms more common). In the second stage, alarm information from individuals is processed by the group. The factors highlighted in this stage influence the likelihood of alarm information being copied by group members and propagated through the group (e.g. some animals implement group processing mechanisms that regulate the spread of behavioural responses such as consensus decision making through the quorum response). This review follows the structure of this new framework, focussing on the causes of false alarms, factors that influence false alarm rate, the transmission of alarm information through animal groups, mechanisms to mitigate the spread of false alarms, and the consequences of false alarms.
Collapse
Affiliation(s)
- Leah Gray
- Centre for Biological Diversity, Sir Harold Mitchell Building & Dyers Brae, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.,Zoology Building, Tillydrone Avenue, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Mike M Webster
- Centre for Biological Diversity, Sir Harold Mitchell Building & Dyers Brae, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| |
Collapse
|
4
|
Brighton CH, Kloepper LN, Harding CD, Larkman L, McGowan K, Zusi L, Taylor GK. Raptors avoid the confusion effect by targeting fixed points in dense aerial prey aggregations. Nat Commun 2022; 13:4778. [PMID: 35999203 PMCID: PMC9399121 DOI: 10.1038/s41467-022-32354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Collective behaviours are widely assumed to confuse predators, but empirical support for a confusion effect is often lacking, and its importance must depend on the predator's targeting mechanism. Here we show that Swainson's Hawks Buteo swainsoni and other raptors attacking swarming Mexican Free-tailed Bats Tadarida brasiliensis steer by turning towards a fixed point in space within the swarm, rather than by using closed-loop pursuit of any one individual. Any prey with which the predator is on a collision course will appear to remain on a constant bearing, so target selection emerges naturally from the geometry of a collision. Our results show how predators can simplify the demands on their sensory system by decoupling steering from target acquisition when capturing prey from a dense swarm. We anticipate that the same tactic will be used against flocks and schools across a wide range of taxa, in which case a confusion effect is paradoxically more likely to occur in attacks on sparse groups, for which steering and target acquisition cannot be decoupled.
Collapse
Affiliation(s)
- Caroline H Brighton
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| | - Laura N Kloepper
- Department of Biological Sciences and Center for Acoustics Research and Education, Spaulding Hall, University of New Hampshire, Durham, NH, 03824, USA
- Department of Biology, Saint Mary's College, 262 Science Hall, Notre Dame, IN, 46556, USA
| | - Christian D Harding
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Lucy Larkman
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kathryn McGowan
- Department of Biological Sciences and Center for Acoustics Research and Education, Spaulding Hall, University of New Hampshire, Durham, NH, 03824, USA
| | - Lillias Zusi
- Department of Biological Sciences and Center for Acoustics Research and Education, Spaulding Hall, University of New Hampshire, Durham, NH, 03824, USA
| | - Graham K Taylor
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
5
|
Jolles JW, Sosna MMG, Mazué GPF, Twomey CR, Bak-Coleman J, Rubenstein DI, Couzin ID. Both prey and predator features predict the individual predation risk and survival of schooling prey. eLife 2022; 11:e76344. [PMID: 35852826 PMCID: PMC9348852 DOI: 10.7554/elife.76344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal 'strike zone' the most vulnerable to be targeted. From the prey's perspective, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike's head. Our results highlight the crucial interplay between predators' attack strategy and response of prey underlying the predation risk within mobile animal groups.
Collapse
Affiliation(s)
- Jolle Wolter Jolles
- Department of Collective Behaviour, Max Planck Institute of Animal BehaviorKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Centre for Ecological Research and Forestry Applications (CREAF)BarcelonaSpain
| | - Matthew MG Sosna
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Geoffrey PF Mazué
- School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Colin R Twomey
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Joseph Bak-Coleman
- eScience Institute, University of WashingtonSeattleUnited States
- Center for an Informed Public, University of WashingtonSeattleUnited States
| | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal BehaviorKonstanzGermany
- Department of Biology, University of KonstanzKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
| |
Collapse
|
6
|
Reynolds AM, McIvor GE, Thornton A, Yang P, Ouellette NT. Stochastic modelling of bird flocks: accounting for the cohesiveness of collective motion. J R Soc Interface 2022; 19:20210745. [PMID: 35440203 PMCID: PMC9019524 DOI: 10.1098/rsif.2021.0745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collective behaviour can be difficult to discern because it is not limited to animal aggregations such as flocks of birds and schools of fish wherein individuals spontaneously move in the same way despite the absence of leadership. Insect swarms are, for example, a form of collective behaviour, albeit one lacking the global order seen in bird flocks and fish schools. Their collective behaviour is evident in their emergent macroscopic properties. These properties are predicted by close relatives of Okubo's 1986 [Adv. Biophys. 22, 1-94. (doi:10.1016/0065-227X(86)90003-1)] stochastic model. Here, we argue that Okubo's stochastic model also encapsulates the cohesiveness mechanism at play in bird flocks, namely the fact that birds within a flock behave on average as if they are trapped in an elastic potential well. That is, each bird effectively behaves as if it is bound to the flock by a force that on average increases linearly as the distance from the flock centre increases. We uncover this key, but until now overlooked, feature of flocking in empirical data. This gives us a means of identifying what makes a given system collective. We show how the model can be extended to account for intrinsic velocity correlations and differentiated social relationships.
Collapse
Affiliation(s)
| | - Guillam E McIvor
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Patricia Yang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nicholas T Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|