1
|
Mukogawa B, Nieh JC. The Varroa paradox: infestation levels and hygienic behavior in feral scutellata-hybrid and managed Apis mellifera ligustica honey bees. Sci Rep 2024; 14:1148. [PMID: 38212601 PMCID: PMC10784517 DOI: 10.1038/s41598-023-51071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
The Varroa destructor mite is a parasitic threat to managed and feral honey bee colonies around the world. Beekeepers use miticides to eliminate Varroa in commercial hives, but these chemicals can diminish bee health and increase miticide resistance. In contrast, feral honey bees have developed multiple ways to counteract mites without chemical treatment. We compared mite levels, grooming habits, and mite-biting behavior between feral Africanized honey bees (genomically verified Apis mellifera scutellata hybrids) and managed Italian honey bees (A. mellifera ligustica). Surprisingly, there was no difference in mite infestation levels between scutellata-hybrids and managed bees over one year despite the regular use of miticides in managed colonies. We also found no differences in the social immunity responses of the two groups, as measured by their hygienic habits (through worker brood pin-kill assays), self-grooming, and mite-biting behavior. However, we provide the first report that both scutellata-hybrids and managed honey bees bite off mite chemosensory forelegs, which the mites use to locate brood cells for reproduction, to a significantly greater degree than other legs (a twofold greater reduction in foreleg length relative to the most anterior legs). Such biting may impair mite reproduction.
Collapse
Affiliation(s)
- Brandon Mukogawa
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr. MC 0116, La Jolla, CA, 92093, USA.
| | - James C Nieh
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr. MC 0116, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Gabel M, Scheiner R, Steffan-Dewenter I, Büchler R. Reproduction of Varroa destructor depends on well-timed host cell recapping and seasonal patterns. Sci Rep 2023; 13:22484. [PMID: 38110489 PMCID: PMC10728205 DOI: 10.1038/s41598-023-49688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Resistance traits of honeybees (Apis mellifera) against their major parasite Varroa destructor have fascinated scientists and breeders for long. Nevertheless, the mechanisms underlying resistance are still largely unknown. The same applies to possible interactions between host behaviours, mite reproduction and seasonal differences. Two resistance traits, reproductive failure of mites and recapping of brood cells, are of particular interest. High rates of recapping at the colony level were found to correspond with low reproductive success of mites. However, the direct effect of recapping on mite reproduction is still controversial and both traits seem to be very variable in their expression. Thus, a deeper knowledge of both, the effect of recapping on mite reproduction and the seasonal differences in the expression of these traits is urgently needed. To shed light on this host-parasite interaction, we investigated recapping and mite reproduction in full-grown colonies naturally infested with V. destructor. Measurements were repeated five times per year over the course of 3 years. The reproductive success of mites as well as the recapping frequency clearly followed seasonal patterns. Thereby, reproductive failure of mites at the cell level was constantly increased in case of recapping. Interestingly, this did not apply to the occurrence of infertile mites. In line with this, recapping activity in fertile cells was most frequent in brood ages in which mite offspring would be expected. Our results suggest that mite offspring is the main target of recapping. This, in turn, leads to a significantly reduced reproductive success of the parasite.
Collapse
Affiliation(s)
- Martin Gabel
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Erlenstraße 9, 35274, Kirchhain, Germany.
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| | - Ricarda Scheiner
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Ralph Büchler
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Erlenstraße 9, 35274, Kirchhain, Germany
| |
Collapse
|
3
|
Smith S, Moro A, McCormack GP. Exploring a Potential Avenue for Beekeeping in Ireland: Safeguarding Locally Adapted Honeybees for Breeding Varroa-Resistant Lines. INSECTS 2023; 14:827. [PMID: 37887838 PMCID: PMC10607453 DOI: 10.3390/insects14100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Beekeeping in Ireland has been strongly impacted by the parasitic mite Varroa destructor, whose introduction caused alarming honeybee colony losses. If unmitigated, these losses could lead to the disappearance of the native honeybee subspecies, Apis mellifera mellifera, with severe consequences for local biodiversity. Although beekeepers play a pivotal role in mitigating this crisis, beekeeping in Ireland is less intensive compared to other European regions, lacking significant infrastructure or support. These circumstances offer a unique opportunity for the development of national programmes that promote sustainable beekeeping practices for varroa control. Notably, local accounts highlight an increasing number of beekeepers successfully managing colonies in the absence of treatments, indicating a potential avenue for developing varroa-resistant stocks through selection of local colonies. Through a survey, we explored beekeeper's opinions and attitudes towards future national projects focused on the development of sustainable beekeeping practices and selection for varroa resistance. The findings confirm the hobbyist nature of Irish beekeepers and their preference for the native honey bee. Some beekeepers were reported to be effectively controlling varroa without treatment, yielding comparable survivals to those using treatments. The majority expressed preference towards a varroa-resistant line if it were of native origin; a few were open to importing non-Irish lines. Overall, a strong willingness to participate in a national breeding programme was expressed. These findings highlight a prime opportunity for Ireland to establish a community-driven strategy based on sustainable beekeeping practices for safeguarding native honeybees and local biodiversity.
Collapse
Affiliation(s)
| | - Arrigo Moro
- Galway Honey Bee Research Centre, Earth and Life Sciences, School of Natural Sciences, University of Galway, University Rd., H91 TK33 Galway, Ireland
| | | |
Collapse
|
4
|
Sprau L, Traynor K, Rosenkranz P. Honey bees (Apis mellifera) preselected for Varroa sensitive hygiene discriminate between live and dead Varroa destructor and inanimate objects. Sci Rep 2023; 13:10340. [PMID: 37365202 DOI: 10.1038/s41598-023-37356-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Varroa destructor is one of the main causes of colony losses of the western honey bee (Apis mellifera). Many efforts exist to breed honey bees resistant to V. destructor. Varroa sensitive hygiene (VSH) is a commonly selected behavioural trait; VSH workers remove the pupae of mite infested brood cells with high efficiency, interrupting the reproduction of the mite. The cues and triggers for this behaviour are not yet fully understood. To determine what elicits this removal behaviour, we examined preselected VSH workers´ responses to four different groups of objects inserted into freshly capped cells: live mites, dead mites, odour reduced mites, and glass beads. These were also compared to control cells that were opened and closed without inserting any object. The pupae in cells containing inorganic objects (glass beads) were removed at similar rates to the control, demonstrating that an object alone does not trigger a removal response. Dead and odour reduced mites were removed at a higher frequency than control cells, but less frequently than live mites. Workers sometimes removed items resting near the top of the cell without removing the pupa. Our results demonstrate that although mite odour from dead mites triggers removal behaviour, the pupa of cells containing live mites were removed more frequently, suggesting that other cues (i.e. odour from feeding wound) or signals (i.e. pupal movement to signal distress) are important. Future research should focus on elucidating these other cues or signals from the brood and mites, as mite presence alone seems to be insufficient.
Collapse
Affiliation(s)
- Lina Sprau
- State Institute of Bee Research, University of Hohenheim, Stuttgart, Germany.
| | - Kirsten Traynor
- State Institute of Bee Research, University of Hohenheim, Stuttgart, Germany
| | - Peter Rosenkranz
- State Institute of Bee Research, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Gabel M, Hoppe A, Scheiner R, Obergfell J, Büchler R. Heritability of Apis mellifera recapping behavior and suppressed mite reproduction as resistance traits towards Varroa destructor. FRONTIERS IN INSECT SCIENCE 2023; 3:1135187. [PMID: 38469460 PMCID: PMC10926398 DOI: 10.3389/finsc.2023.1135187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/08/2023] [Indexed: 03/13/2024]
Abstract
The selection of honeybee strains resistant to the ectoparasitic mite Varroa destructor is generally considered as one of the most sustainable ways of coping with this major bee parasite. Thus, breeding efforts increasingly focus on resistance parameters in addition to common beekeeping traits like honey yield and gentleness. In every breeding effort, the success strongly depends on the quantifiability and heritability of the traits accounted. To find the most suitable traits among the manifold variants to assess Varroa resistance, it is necessary to evaluate how easily a trait can be measured (i.e., testing effort) in relation to the underlying heritability (i.e., expected transfer to the following generation). Various possible selection traits are described as beneficial for colony survival in the presence of Varroa destructor and therefore are measured in breeding stocks around the globe. Two of them in particular, suppressed mite reproduction (SMR, sensu lato any reproductive failure of mother mites) and recapping of already sealed brood cells have recently gained increasing attention among the breeders because they closely resemble resistance mechanisms of some Varroa-surviving honeybee populations. However, it was still unknown whether the genetic background of the trait is sufficient for targeted selection. We therefore investigated the heritabilities and genetic correlations for SMR and REC, distinguishing between recapping of infested cells (RECinf) and all cells (RECall), on an extensive dataset of Buckfast and Carniolan stock in Germany. With an accessible h² of 0.18 and 0.44 for SMR and an accessible h² of 0.44 and 0.40 for RECinf, both traits turned out to be very promising for further selection in the Buckfast and Carnica breeding population, respectively.
Collapse
Affiliation(s)
- Martin Gabel
- Landesbetrieb Landwirtschaft Hessen, Bieneninstitut Kirchhain, Kirchhain, Germany
- Universität Würzburg, Verhaltensphysiologie und Soziobiologi, Würzburg, Germany
| | - Andreas Hoppe
- Länderinstitut für Bienenkunde Hohen Neuendorf e. V., Hohen Neuendorf, Germany
| | - Ricarda Scheiner
- Universität Würzburg, Verhaltensphysiologie und Soziobiologi, Würzburg, Germany
| | - Jörg Obergfell
- Gemeinschaft der europäischen Buckfastimker e.V., Kassel, Germany
| | - Ralph Büchler
- Landesbetrieb Landwirtschaft Hessen, Bieneninstitut Kirchhain, Kirchhain, Germany
| |
Collapse
|
6
|
A survey of UK beekeeper's Varroa treatment habits. PLoS One 2023; 18:e0281130. [PMID: 36791085 PMCID: PMC9931098 DOI: 10.1371/journal.pone.0281130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
The global spread of the parasitic mite Varroa destructor instigated a substantial decline in both managed and feral honeybee (Apis mellifera) colonies mainly across the Northern hemisphere. In response, many beekeepers began to treat their colonies with chemical acaricides to control mite populations in managed colonies. However, some countries or beekeepers allowed their bees to develop mite-resistance by adopting a "treatment-free" approach, rather than using selective breeding programs. Yet, the distribution and proportion of beekeepers either treating or not within the United Kingdom (UK) is unknown, as it is in most Northern hemisphere countries. Therefore, the aim of this study was to conduct a beekeeper survey to determine the current treatment strategies within the UK. We gathered 2,872 beekeeper responses from an estimated 30,000 UK beekeepers belonging to 242 bee-associations in the winter of 2020/21. The survey indicated that the majority (72-79%) of UK beekeepers are still treating their bees for Varroa, typically twice-yearly using chemical-based methods. Six percent or 1,800 UK beekeepers were treatment-free for six years or more. This is reflected by our finding that 78 associations out of 242 consist of responders who entirely treated, while only four associations had more than 75% of their members that were non-treating. Overall treatment status was not affected by association currently. Using the baseline data from this survey it will be possible in the future to observer if a shift towards treatment-free beekeeping occurs or not.
Collapse
|
7
|
Guichard M, von Virag A, Dainat B. Evaluating the Potential of Brood Recapping to Select Varroa destructor (Acari: Varroidae) Resistant Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:56-67. [PMID: 36453974 PMCID: PMC9912135 DOI: 10.1093/jee/toac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 06/17/2023]
Abstract
Several resistance traits have been proposed to select honey bees (Apis mellifera L.) that can survive in the presence of parasitic mite Varroa destructor (Anderson and Trueman) and enable a more sustainable apiculture. The interest for uncapping-recapping has recently increased following its identification in several naturally surviving honey bee populations, yet the utility of this trait for human-mediated selection is poorly known. Here, we evaluated the repeatability of recapping and its correlations with mite infestation levels, and assessed the expression of the trait in the often neglected drone brood. We also calculated correlations between recapping, mite infertility, and mite fecundity, expressed either at the level of individual brood cells or of the whole colony. Recapping measured in worker brood showed moderate repeatability (ranging between 0.30 and 0.46). Depending on sample, recapping slightly correlated negatively with colony infestation values. Recapping was also measured in drone brood, with values often comparable to recapping in worker brood, but no significant correlations were obtained between castes. At cell level, recapped cells in drone brood (but not in workers) were significantly less infested than nonrecapped cells, whereas in workers (but not in drones), recapped cells hosted mites with significantly lower fecundity. At colony level, with a few exceptions, recapping did not significantly correlate with mite infertility and fecundity, caste, sample, or number of infested cells considered. These results indicate limited possibilities of impeding mite reproduction and possibly mite infestation of honey bee colonies by recapping, which would need to be confirmed on larger, different populations.
Collapse
|
8
|
Mendoza Y, Santos E, Clavijo-Baquett S, Invernizzi C. A Reciprocal Transplant Experiment Confirmed Mite-Resistance in a Honey Bee Population from Uruguay. Vet Sci 2022; 9:vetsci9110596. [PMID: 36356073 PMCID: PMC9694040 DOI: 10.3390/vetsci9110596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary In Uruguay, as in many countries around the world, the Varroa destructor mite is the main biotic threat to honey bees (Apis mellifera). Most beekeepers regularly apply acaricides to their colonies to have good honey harvests and avoid large losses, with the exception of beekeepers in the east of the country where bees coexist with V. destructor without suffering significant damage. To unravel the different A. mellifera–V. destructor relationships found in the country, a reciprocal transplant experiment was performed between the mite-resistant bee colonies and the mite-susceptible bee colonies from the east and the west of the country, respectively. The differences between the two groups of bees in the control of V. destructor were maintained in the two environments. No mite-susceptible colonies survived the winter. The behavioral resistance of bees (hygienic behavior) and reproductive aspects of V. destructor (phoretic mites/reproductive mites and mites in drone cells/mites in worker cells ratio) could explain the results obtained. Abstract In the past few years there has been an increasing interest for the study of honey bee populations that are naturally resistant to the ectoparasitic mite Varroa destructor, aiming to identify the mechanisms that allow the bees to limit the reproduction of the mite. In eastern Uruguay there are still bees resistant to mites that survive without acaricides. In order to determine if the differential resistance to V. destructor was maintained in other environments, a reciprocal transplant experiment was performed between the mite-resistant bee colonies and the mite-susceptible bee colonies from the east and the west of the country, respectively, infesting bees with local mites. In both regions, the mite-resistant colonies expressed a higher hygienic behavior and presented a higher phoretic mites/reproductive mites and mites in drone cells/mites in worker cells ratio than the mite-susceptible colonies. All the mite-susceptible colonies died during fall–winter, while a considerable number of mite-resistant colonies survived until spring, especially in the east of the country. This study shows that the bees in the east of the country maintain in good measure the resistance to V. destructor in other regions and leaves open the possibility that the mites of the two populations have biases in the reproductive behavior.
Collapse
Affiliation(s)
- Yamandú Mendoza
- Sección Apicultura, Programa de Producción Familiar, Instituto Nacional de Investigación Agropecuaria La Estanzuela, Ruta 50 km 11, Colonia 70002, Uruguay
| | - Estela Santos
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Sabrina Clavijo-Baquett
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Isidoro de María 1614, Montevideo 11800, Uruguay
| | - Ciro Invernizzi
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), Isidoro de María 1614, Montevideo 11800, Uruguay
- Correspondence:
| |
Collapse
|
9
|
Luis AR, Grindrod I, Webb G, Piñeiro AP, Martin SJ. Recapping and mite removal behaviour in Cuba: home to the world's largest population of Varroa-resistant European honeybees. Sci Rep 2022; 12:15597. [PMID: 36114263 PMCID: PMC9481617 DOI: 10.1038/s41598-022-19871-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The Varroa destructor ectoparasitic mite has spread globally and in conjunction with Deformed Wing Virus has killed millions of honeybee (Apis mellifera) colonies. This has forced Northern hemisphere beekeepers into using miticides to avoid mass colony losses. However, in many Southern hemisphere countries widespread treatment did not occur since miticides were prohibitively expensive, or a centralised choice was made not to treat, both allowing natural selection to act. The Varroa mite initially caused high losses before mite-resistance appeared in the honeybee populations. Initially, mite-resistance was only associated with African and Africanised honeybees. Although recently, several isolated mite-resistant European honeybee populations have appeared. Here we studied the mite-resistance in Cuba and found high rates of recapping of infested worker cells (77%), high removal of mites (80%) and corresponding low mite fertility (r = 0.77). These are all traits found in all naturally evolved Varroa-resistant populations. We can confirm Cuba has the world's largest European mite-resistant population with 220,000 colonies that have been treatment-free for over two decades and illustrating the power of natural selection. Cuban honeybees are also highly productive, 40-70 kg of honey produced annually, and are mild mannered. Cuba is an excellent example of what is possible when honeybees are allowed to adapt naturally to Varroa with minimal human interference.
Collapse
Affiliation(s)
| | - Isobel Grindrod
- School of Science, Engineering and Environment, The University of Salford, Manchester, M5 4WT, UK
| | - Georgiana Webb
- School of Science, Engineering and Environment, The University of Salford, Manchester, M5 4WT, UK
| | | | - Stephen John Martin
- School of Science, Engineering and Environment, The University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
10
|
Kohl PL, Rutschmann B, Steffan-Dewenter I. Population demography of feral honeybee colonies in central European forests. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220565. [PMID: 35950195 PMCID: PMC9346370 DOI: 10.1098/rsos.220565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
European honeybee populations are considered to consist only of managed colonies, but recent censuses have revealed that wild/feral colonies still occur in various countries. To gauge the ecological and evolutionary relevance of wild-living honeybees, information is needed on their population demography. We monitored feral honeybee colonies in German forests for up to 4 years through regular inspections of woodpecker cavity trees and microsatellite genotyping. Each summer, about 10% of the trees were occupied, corresponding to average densities of 0.23 feral colonies km-2 (an estimated 5% of the regional honeybee populations). Populations decreased moderately until autumn but dropped massively during winter, so that their densities were only about 0.02 colonies km-2 in early spring. During the reproductive (swarming) season, in May and June, populations recovered, with new swarms preferring nest sites that had been occupied in the previous year. The annual survival rate and the estimated lifespan of feral colonies (n = 112) were 10.6% and 0.6 years, respectively. We conclude that managed forests in Germany do not harbour self-sustaining feral honeybee populations, but they are recolonized every year by swarms escaping from apiaries.
Collapse
Affiliation(s)
- Patrick L. Kohl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Benjamin Rutschmann
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Brown MJF. Complex networks of parasites and pollinators: moving towards a healthy balance. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210161. [PMID: 35491603 DOI: 10.1098/rstb.2021.0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Parasites are viewed as a major threat to wild pollinator health. While this may be true for epidemics driven by parasite spillover from managed or invasive species, the picture is more complex for endemic parasites. Wild pollinator species host and share a species-rich, generalist parasite community. In contrast to the negative health impacts that these parasites impose on individual hosts, at a community level they may act to reduce competition from common and abundant pollinator species. By providing rare species with space in which to exist, this will act to support and maintain a diverse and thus healthier pollinator community. At this level, and perhaps paraxodically, parasites may be good for pollinators. This stands in clear contrast to the obvious negative impacts of epidemic and spillover parasites on wild pollinator communities. Research into floral resources that control parasites could be best employed to help design landscapes that provide pollinators with the opportunity to moderate their parasite community, rather than attempting to eliminate specific parasites from wild pollinator communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
12
|
Panziera D, Requier F, Chantawannakul P, Pirk CWW, Blacquière T. The Diversity Decline in Wild and Managed Honey Bee Populations Urges for an Integrated Conservation Approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.767950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Many parts of the globe experience severe losses and fragmentation of habitats, affecting the self-sustainability of pollinator populations. A number of bee species coexist as wild and managed populations. Using honey bees as an example, we argue that several management practices in beekeeping threaten genetic diversity in both wild and managed populations, and drive population decline. Large-scale movement of hive stocks, introductions into new areas, breeding programs and trading of queens contribute to reducing genetic diversity, as recent research demonstrated for wild and managed honey bees within a few decades. Examples of the effects of domestication in other organisms show losses of both genetic diversity and fitness functions. Cases of natural selection and feralization resulted in maintenance of a higher genetic diversity, including in a Varroa destructor surviving population of honey bees. To protect the genetic diversity of honey bee populations, exchange between regions should be avoided. The proposed solution to selectively breed all local subspecies for a use in beekeeping would reduce the genetic diversity of each, and not address the value of the genetic diversity present in hybridized populations. The protection of Apis mellifera’s, Apis cerana’s and Apis koschevnikovi’s genetic diversities could be based on natural selection. In beekeeping, it implies to not selectively breed but to leave the choice of the next generation of queens to the colonies, as in nature. Wild populations surrounded by beekeeping activity could be preserved by allowing Darwinian beekeeping in a buffer zone between the wild and regular beekeeping area.
Collapse
|