1
|
Asar Y, Sauquet H, Ho SYW. Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution. Syst Biol 2023; 72:1337-1356. [PMID: 37695237 PMCID: PMC10924723 DOI: 10.1093/sysbio/syad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Machado FA, Mongle CS, Slater G, Penna A, Wisniewski A, Soffin A, Dutra V, Uyeda JC. Rules of teeth development align microevolution with macroevolution in extant and extinct primates. Nat Ecol Evol 2023; 7:1729-1739. [PMID: 37652997 DOI: 10.1038/s41559-023-02167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Macroevolutionary biologists have classically rejected the notion that higher-level patterns of divergence arise through microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of quantitative genetics models to correctly predict the behaviour of evolutionary processes at the scale of millions of years. Developmental studies (evo-devo) have been proposed to reconcile micro- and macroevolution. However, there has been little progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here we reframe this issue by asking whether using evo-devo models to quantify biological variation can improve the explanatory power of comparative models, thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that biologically informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro- and macroscales, whereas biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is corridor like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution.
Collapse
Affiliation(s)
- Fabio A Machado
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Graham Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Penna
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Anna Wisniewski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Soffin
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Vitor Dutra
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL, USA
| | - Josef C Uyeda
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
3
|
Schroeder L, Ackermann RR. Moving beyond the adaptationist paradigm for human evolution, and why it matters. J Hum Evol 2023; 174:103296. [PMID: 36527977 DOI: 10.1016/j.jhevol.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The Journal of Human Evolution (JHE) was founded 50 years ago when much of the foundation for how we think about human evolution was in place or being put in place, providing the main framework for how we consider our origins today. Here, we will explore historical developments, including early JHE outputs, as they relate to our understanding of the relationship between phenotypic variation and evolutionary process, and use that as a springboard for considering our current understanding of these links as applied to human evolution. We will focus specifically on how the study of variation itself has shifted us away from taxonomic and adaptationist perspectives toward a richer understanding of the processes shaping human evolutionary history, using literature searches and specific test cases to highlight this. We argue that natural selection, gene exchange, genetic drift, and mutation should not be considered individually when considering the production of hominin diversity. In this context, we offer suggestions for future research directions and reflect on this more complex understanding of human evolution and its broader relevance to society. Finally, we end by considering authorship demographics and practices in the last 50 years within JHE and how a shift in these demographics has the potential to reshape the science of human evolution going forward.
Collapse
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Rebecca Rogers Ackermann
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa; Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
4
|
Simões TR, Kammerer CF, Caldwell MW, Pierce SE. Successive climate crises in the deep past drove the early evolution and radiation of reptiles. SCIENCE ADVANCES 2022; 8:eabq1898. [PMID: 35984885 PMCID: PMC9390993 DOI: 10.1126/sciadv.abq1898] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Climate change-induced mass extinctions provide unique opportunities to explore the impacts of global environmental disturbances on organismal evolution. However, their influence on terrestrial ecosystems remains poorly understood. Here, we provide a new time tree for the early evolution of reptiles and their closest relatives to reconstruct how the Permian-Triassic climatic crises shaped their long-term evolutionary trajectory. By combining rates of phenotypic evolution, mode of selection, body size, and global temperature data, we reveal an intimate association between reptile evolutionary dynamics and climate change in the deep past. We show that the origin and phenotypic radiation of reptiles was not solely driven by ecological opportunity following the end-Permian extinction as previously thought but also the result of multiple adaptive responses to climatic shifts spanning 57 million years.
Collapse
Affiliation(s)
- Tiago R. Simões
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
- Corresponding author.
| | - Christian F. Kammerer
- North Carolina Museum of Natural Sciences, 11 W. Jones Street, Raleigh, NC 27601, USA
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC 27695, USA
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, 11645 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, 11645 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Schroeder L, Elton S, Ackermann RR. Skull variation in Afro-Eurasian monkeys results from both adaptive and non-adaptive evolutionary processes. Sci Rep 2022; 12:12516. [PMID: 35869137 PMCID: PMC9307787 DOI: 10.1038/s41598-022-16734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Afro-Eurasian monkeys originated in the Miocene and are the most species-rich modern primate family. Molecular and fossil data have provided considerable insight into their evolutionary divergence, but we know considerably less about the evolutionary processes that underlie these differences. Here, we apply tests developed from quantitative genetics theory to a large (n > 3000) cranio-mandibular morphometric dataset, investigating the relative importance of adaptation (natural selection) and neutral processes (genetic drift) in shaping diversity at different taxonomic levels, an approach applied previously to monkeys of the Americas, apes, hominins, and other vertebrate taxa. Results indicate that natural selection, particularly for differences in size, plays a significant role in diversifying Afro-Eurasian monkeys as a whole. However, drift appears to better explain skull divergence within the subfamily Colobinae, and in particular the African colobine clade, likely due to habitat fragmentation. Small and declining population sizes make it likely that drift will continue in this taxon, with potentially dire implications for genetic diversity and future resilience in the face of environmental change. For the other taxa, many of whom also have decreasing populations and are threatened, understanding adaptive pressures similarly helps identify relative vulnerability and may assist with prioritising scarce conservation resources.
Collapse
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Sarah Elton
- Department of Anthropology, Durham University, Dawson Building, South Road, Durham, DH1 3LE, UK
| | - Rebecca Rogers Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|