1
|
Basu P, Ngo HT, Aizen MA, Garibaldi LA, Gemmill-Herren B, Imperatriz-Fonseca V, Klein AM, Potts SG, Seymour CL, Vanbergen AJ. Pesticide impacts on insect pollinators: Current knowledge and future research challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176656. [PMID: 39366587 DOI: 10.1016/j.scitotenv.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
With the need to intensify agriculture to meet growing food demand, there has been significant rise in pesticide use to protect crops, but at different rates in different world regions. In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment on pollinators, pollination and food production identified pesticides as one of the major drivers of pollinator decline. This assessment highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species, primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural practices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment (2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to 4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to increase across all Asian regions. In each of the respective regions, we also examined the number of studies since 2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive update on the status of knowledge on pesticide impacts on different pollinating insects from literature published during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides and highlight some regional and international conservation efforts and initiatives that address pesticide reduction and/or elimination.
Collapse
Affiliation(s)
- P Basu
- Department of Zoology, University of Calcutta, Kolkata, India.
| | - H T Ngo
- Food and Agriculture Organization of the United Nations (UN FAO), Regional Office for Latin America and the Caribbean (RLC), Región Metropolitana, Santiago, Chile
| | - M A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - L A Garibaldi
- National University of Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina; National Council of Scientific and Technical Research, Institute of Research in Natural Resources, Agroecology and Rural Development, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - A M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - C L Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, South Africa; FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - A J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Zhao X, Jiang J, Pang Z, Ma W, Jiang Y, Fu Y, Liu Y. Tracking Existing Factors Directly Affecting the Reproduction of Bumblebees: Current Knowledge. INSECTS 2024; 15:654. [PMID: 39336622 PMCID: PMC11432074 DOI: 10.3390/insects15090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bumblebees are primary social insects and a vital class of pollinating insects. Their distinctive reproductive mode is characterized by the independent initiation and construction of the nest by the queen and the subsequent production of sufficient workers, males, and gynes following colony development. After successful mating, the queen transitions to the first phase of its annual life cycle. The reproductive processes are directly influenced by environmental factors, including floral resources and pesticides. Moreover, the reproductive level is regulated by biological factors, particularly the role of workers, who participate in egg laying and pass on their genetic material to the next generation of queens. Successful reproduction can only be achieved by maintaining colony development under natural or artificial breeding conditions. Consequently, understanding the known factors that influence bumblebee reproduction is essential for developing conservation strategies for wild bumblebees and for successfully breeding diverse bumblebee species. Breeding various bumblebee species is crucial for in-depth research into known factors and for further exploration of other potential factors, which will also help to meet the demand for pollination in agricultural facilities globally.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Jingxin Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Zilin Pang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Yusuo Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Yanfang Fu
- HeBei Provincial Animal Husbandry Station, Shijiazhuang 050035, China;
| | - Yanjie Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| |
Collapse
|
3
|
Raine NE, Rundlöf M. Pesticide Exposure and Effects on Non- Apis Bees. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:551-576. [PMID: 37827173 DOI: 10.1146/annurev-ento-040323-020625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
4
|
Chole H, de Guinea M, Woodard SH, Bloch G. Field-realistic concentrations of a neonicotinoid insecticide influence socially regulated brood development in a bumblebee. Proc Biol Sci 2022; 289:20220253. [PMID: 36382527 PMCID: PMC9667354 DOI: 10.1098/rspb.2022.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/28/2022] [Indexed: 04/20/2024] Open
Abstract
The systemic neonicotinoid insecticides are considered as one of the key culprits contributing to ongoing declines in pollinator health and abundance. Bumblebees are among the most important pollinators of temperate zone plants, making their susceptibility to neonicotinoid exposure of great concern. We report that bumblebee (Bombus terrestris) colonies exposed to field-realistic concentrations of the commonly used neonicotinoid Imidacloprid grew slower, consumed less food, and produced fewer workers, males and gynes, but unexpectedly produced larger workers compared to control colonies. Behavioural observations show that queens in pesticide-treated colonies spend more time inactive and less time caring for the brood. We suggest that the observed effects on brood body size are driven by a decreased queen ability to manipulate the larva developmental programme. These findings reveal an intricate and previously unknown effect of insecticides on the social interactions controlling brood development in social insect colonies. Insecticide influences on the social mechanisms regulating larval development are potentially detrimental for bumblebees, in which body size strongly influences both caste differentiation and the division of labour among workers, two organization principles of insect societies.
Collapse
Affiliation(s)
- Hanna Chole
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Miguel de Guinea
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - S. Hollis Woodard
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|