1
|
Zhang W, Lin K, Fu W, Xie J, Fan X, Zhang M, Luo H, Yin Y, Guo Q, Huang H, Chen T, Lin X, Yuan Y, Huang C, Du S. Insights for the Captive Management of South China Tigers Based on a Large-Scale Genetic Survey. Genes (Basel) 2024; 15:398. [PMID: 38674333 PMCID: PMC11049310 DOI: 10.3390/genes15040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
There is an urgent need to find a way to improve the genetic diversity of captive South China tiger (SCT, Panthera tigris amoyensis), the most critically endangered taxon of living tigers, facing inbreeding depression. The genomes showed that 13 hybrid SCTs from Meihuashan were divided into two groups; one group included three individuals who had a closer relationship with pureblood SCTs than another group. The three individuals shared more that 40% of their genome with pureblood SCTs and might be potential individuals for genetic rescuing in SCTs. A large-scale genetic survey based on 319 pureblood SCTs showed that the mean microsatellite inbreeding coefficient of pureblood SCTs decreased significantly from 0.1789 to 0.0600 (p = 0.000009) and the ratio of heterozygous loci increased significantly from 38.5% to 43.2% (p = 0.02) after one individual of the Chongqing line joined the Suzhou line and began to breed in the mid-1980s, which is a reason why the current SCTs keep a moderate level of microsatellite heterozygosity and nucleotide diversity. However, it is important to establish a back-up population based on the three individuals through introducing one pureblood SCT into the back-up population every year. The back-up population should be an important reserve in case the pureblood SCTs are in danger in the future.
Collapse
Affiliation(s)
- Wenping Zhang
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China; (W.Z.)
| | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan 364201, China; (K.L.); (H.L.)
| | - Wenyuan Fu
- Longyan Geopark Protection and Development Center, Longyan 364201, China
| | - Junjin Xie
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xueyang Fan
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Mingchun Zhang
- China Conservation and Research Center for the Giant Panda, Chengdu 611830, China;
| | - Hongxing Luo
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan 364201, China; (K.L.); (H.L.)
| | | | - Qiang Guo
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China; (W.Z.)
| | - He Huang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Tengteng Chen
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan 364201, China; (K.L.); (H.L.)
| | - Xipan Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan 364201, China; (K.L.); (H.L.)
| | | | - Cheng Huang
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan 364201, China; (K.L.); (H.L.)
| | - Shizhang Du
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China; (W.Z.)
| |
Collapse
|
2
|
Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, Driscoll CA, Pang Y, Li C, Pan Y, Velasco MS, Gopalakrishnan S, Yang RZ, Li BG, Jin K, Xu X, Uphyrkina O, Huang Y, Wu XH, Gilbert MTP, O'Brien SJ, Yamaguchi N, Luo SJ. Ancient DNA reveals genetic admixture in China during tiger evolution. Nat Ecol Evol 2023; 7:1914-1929. [PMID: 37652999 DOI: 10.1038/s41559-023-02185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
Collapse
Affiliation(s)
- Xin Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mikhail P Tiunov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Dmitry O Gimranov
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Ural Federal University, Yekaterinburg, Russia
| | - Yan Zhuang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Han
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Carlos A Driscoll
- Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD, USA
| | - Yuhong Pang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Chunmei Li
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yan Pan
- School of Archaeology and Museology, Peking University, Beijing, China
| | - Marcela Sandoval Velasco
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui-Zheng Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Jin
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Olga Uphyrkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, China
| | - Xiao-Hong Wu
- School of Archaeology and Museology, Peking University, Beijing, China
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University of Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Yuan J, Sun G, Xiao B, Hu J, Wang L, Taogetongqimuge, Bao L, Hou Y, Song S, Jiang S, Wu Y, Pan D, Liu Y, Westbury MV, Lai X, Sheng G. Ancient mitogenomes reveal a high maternal genetic diversity of Pleistocene woolly rhinoceros in Northern China. BMC Ecol Evol 2023; 23:56. [PMID: 37752413 PMCID: PMC10521388 DOI: 10.1186/s12862-023-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Woolly rhinoceros (Coelodonta antiquitatis) is a typical indicator of cold-stage climate that was widely distributed in Northern Hemisphere during the Middle-Late Pleistocene. Although a plethora of fossils have been excavated from Northern China, their phylogenetic status, intraspecific diversity and phylogeographical structure are still vague. RESULTS In the present study, we generated four mitogenomes from Late Pleistocene woolly rhinoceros in Northern China and compared them with published data. Bayesian and network analyses indicate that the analyzed individuals contain at least four maternal haplogroups, and Chinese samples fall in three of them. One of our samples belongs to a previously unidentified early diverging clade (haplogroup D), which separated from other woolly rhinoceros around 0.57 Ma (95% CI: 0.76-0.41 Ma). The timing of this clade's origin coincides with the first occurrence of woolly rhinoceros, which are thought to have evolved in Europe. Our other three samples cluster in haplogroup C, previously only identified from one specimen from Wrangel Island (ND030) and initially considered to be an isolated clade. Herein, our findings suggest that ND030 is likely descended from a northward dispersal of the individuals carrying haplogroup C from Northern China. Additionally, Chinese woolly rhinoceros specimens exhibit higher nucleotide diversity than those from Siberia. CONCLUSION Our findings highlight Northern China as a possible refugium and a key evolution center of the Pleistocene woolly rhinoceros.
Collapse
Affiliation(s)
- Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
- Bioarchaeology Laboratory, Jilin University, Changchun, 130012, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China.
| | - Guojiang Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Linying Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
- College of Earth and Environmental Science, Lanzhou University, Lanzhou, 730099, China
| | | | - Lei Bao
- Ordos Institute of Cultural Relics and Archaeology, Ordos, 017010, China
| | - Yamei Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Shiwen Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Shan Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Yong Wu
- The Third Geological and Mineral Exploration Institute of Gansu Bureau of Geology and Mineral Resources, Lanzhou, 730050, China
| | - Dong Pan
- Palaeontological Fossil Conservation Center, Qinggang County, Suihua, 151600, China
| | - Yang Liu
- School of Sociology & Anthropology, Sun Yat-sen University, Guangzhou, 510275, China
| | | | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|