1
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Yang Z, Zhang L, Zhang W, Tian X, Lai W, Lin D, Feng Y, Jiang W, Zhang Z, Zhang Z. Identification of the principal neuropeptide MIP and its action pathway in larval settlement of the echiuran worm Urechis unicinctus. BMC Genomics 2024; 25:337. [PMID: 38641568 PMCID: PMC11027379 DOI: 10.1186/s12864-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Xinhua Tian
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenyuan Lai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya, China.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Abstract
The goal of comparative developmental biology is identifying mechanistic differences in embryonic development between different taxa and how these evolutionary changes have led to morphological and organizational differences in adult body plans. Much of this work has focused on direct-developing species in which the adult forms straight from the embryo and embryonic modifications have direct effects on the adult. However, most animal lineages are defined by indirect development, in which the embryo gives rise to a larval body plan and the adult forms by transformation of the larva. Historically, much of our understanding of complex life cycles is viewed through the lenses of ecology and zoology. In this review, we discuss the importance of establishing developmental rather than morphological or ecological criteria for defining developmental mode and explicitly considering the evolutionary implications of incorporating complex life cycles into broad developmental comparisons of embryos across metazoans.
Collapse
Affiliation(s)
- Laurent Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Department of Cell and Molecular Biology, University of California, Berkeley, California, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Chan Zuckerberg BioHub, San Francisco, California, USA
| |
Collapse
|
4
|
Wei J, Liu P, Liu F, Jiang A, Qiao J, Pu Z, Wang B, Zhang J, Jia D, Li Y, Wang S, Dong B. EDomics: a comprehensive and comparative multi-omics database for animal evo-devo. Nucleic Acids Res 2023; 51:D913-D923. [PMID: 36318263 PMCID: PMC9825439 DOI: 10.1093/nar/gkac944] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 01/09/2023] Open
Abstract
Evolutionary developmental biology (evo-devo) has been among the most fascinating interdisciplinary fields for decades, which aims to elucidate the origin and evolution of diverse developmental processes. The rapid accumulation of omics data provides unprecedented opportunities to answer many interesting but unresolved evo-devo questions. However, the access and utilization of these resources are hindered by challenges particularly in non-model animals. Here, we establish a comparative multi-omics database for animal evo-devo (EDomics, http://edomics.qnlm.ac) containing comprehensive genomes, bulk transcriptomes, and single-cell data across 40 representative species, many of which are generally used as model organisms for animal evo-devo study. EDomics provides a systematic view of genomic/transcriptomic information from various aspects, including genome assembly statistics, gene features and families, transcription factors, transposable elements, and gene expressional profiles/networks. It also exhibits spatiotemporal gene expression profiles at a single-cell level, such as cell atlas, cell markers, and spatial-map information. Moreover, EDomics provides highly valuable, customized datasets/resources for evo-devo research, including gene family expansion/contraction, inferred core gene repertoires, macrosynteny analysis for karyotype evolution, and cell type evolution analysis. EDomics presents a comprehensive and comparative multi-omics platform for animal evo-devo community to decipher the whole history of developmental evolution across the tree of life.
Collapse
Affiliation(s)
- Jiankai Wei
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Penghui Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fuyun Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - An Jiang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jinghan Qiao
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhongqi Pu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bingrou Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jin Zhang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Dongning Jia
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuli Li
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shi Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Bo Dong
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Gaunt SJ. Seeking Sense in the Hox Gene Cluster. J Dev Biol 2022; 10:48. [PMID: 36412642 PMCID: PMC9680502 DOI: 10.3390/jdb10040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hox gene cluster, responsible for patterning of the head-tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head-tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head-tail axis?
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Wei M, Qin Z, Kong D, Liu D, Zheng Q, Bai S, Zhang Z, Ma Y. Echiuran Hox genes provide new insights into the correspondence between Hox subcluster organization and collinearity pattern. Proc Biol Sci 2022; 289:20220705. [PMID: 36264643 PMCID: PMC9449475 DOI: 10.1098/rspb.2022.0705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/29/2022] [Indexed: 09/16/2023] Open
Abstract
In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood. Here, we investigate genomic organization and expression pattern of Hox genes in the echiuran worm Urechis unicinctus (Annelida, Echiura). Urechis unicinctus has a split cluster with four subclusters divided by non-Hox genes: first subcluster (Hox1 and Hox2), second subcluster (Hox3), third subcluster (Hox4, Hox5, Lox5, Antp and Lox4), fourth subcluster (Lox2 and Post2). The expression of U. unicinctus Hox genes shows a subcluster-based whole-cluster spatio-temporal collinearity (S-WSTC) pattern: the anterior-most genes in each subcluster are activated in a spatially and temporally colinear manner (reminiscent of WSTC), with the subsequent genes in each subcluster then being very similar to their respective anterior-most subcluster gene. Combining genomic organization and expression profiles of Hox genes in different invertebrate lineages, we propose that the spatio-temporal collinearity of invertebrate Hox is subcluster-based.
Collapse
Affiliation(s)
- Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qiaojun Zheng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|