1
|
Gąsiorowski L. Phoronida-A small clade with a big role in understanding the evolution of lophophorates. Evol Dev 2024; 26:e12437. [PMID: 37119003 DOI: 10.1111/ede.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
Phoronids, together with brachiopods and bryozoans, form the animal clade Lophophorata. Modern lophophorates are quite diverse-some can biomineralize while others are soft-bodied, they could be either solitary or colonial, and they develop through various eccentric larval stages that undergo different types of metamorphoses. The diversity of this clade is further enriched by numerous extinct fossil lineages with their own distinct body plans and life histories. In this review, I discuss how data on phoronid development, genetics, and morphology can inform our understanding of lophophorate evolution. The actinotrocha larvae of phoronids is a well documented example of intercalation of the new larval body plan, which can be used to study how new life stages emerge in animals with biphasic life cycle. The genomic and embryonic data from phoronids, in concert with studies of the fossil lophophorates, allow the more precise reconstruction of the evolution of lophophorate biomineralization. Finally, the regenerative and asexual abilities of phoronids can shed new light on the evolution of coloniality in lophophorates. As evident from those examples, Phoronida occupies a central role in the discussion of the evolution of lophophorate body plans and life histories.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
2
|
Decker SH, Saadi AJ, Baranyi C, Hirose M, Lemer S, Sombke A, Aguilera F, Vieira LM, Smith AM, Waeschenbach A, Schwaha T. Boring systematics: A genome skimmed phylogeny of ctenostome bryozoans and their endolithic family Penetrantiidae with the description of one new species. Ecol Evol 2024; 14:e11276. [PMID: 38638369 PMCID: PMC11024686 DOI: 10.1002/ece3.11276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Ctenostomes are a group of gymnolaemate bryozoans with an uncalcified chitinous body wall having few external, skeletal characters. Hence, species identification is challenging and their systematics remain poorly understood, even more so when they exhibit an endolithic (boring) lifestyle. Currently, there are four Recent families of endolithic bryozoans that live inside mineralized substrates like mollusk shells. In particular, Penetrantiidae Silén, 1946 has received considerable attention and its systematic affinity to either cheilostomes or ctenostomes has been debated. Species delimitation of penetrantiids remains difficult, owing to a high degree of colonial and zooidal plasticity. Consequently, an additional molecular approach is essential to unravel the systematics of penetrantiids, their phylogenetic placement and their species diversity. We therefore sequenced the mitochondrial (mt) genomes and two nuclear markers of 27 ctenostome species including nine penetrantiids. Our phylogeny supports the Penetrantiidae as a monophyletic group placed as sister taxon to the remaining ctenostomes alongside paludicellids, arachnidioids and terebriporids. The boring family Terebriporidae d'Orbigny, 1847 were previously considered to be among vesicularioids, but our results suggest an arachnidioid affinity instead. Ctenostome paraphyly is supported by our data, as the cheilostomes nest within them. A Multiporata clade is also well supported, including the former victorelloid genus Sundanella. Altogether, this study provides new insights into ctenostome systematics, assists with species delimitation and contributes to our understanding of the bryozoan tree of life.
Collapse
Affiliation(s)
| | - Ahmed J. Saadi
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | | | - Masato Hirose
- School of Marine BiosciencesKitasato UniversityMinato‐kuJapan
| | | | - Andy Sombke
- Center for Anatomy and Cell Biology, Cell and Developmental BiologyMedical University of ViennaViennaAustria
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile
| | - Leandro M. Vieira
- Laboratório de Estudos de Bryozoa—LAEBry, Departamento de Zoologia, Centro de BiociênciasUniversidade Federal de PernambucoRecifePEBrazil
- Department of Life ScienceNatural History MuseumLondonUK
| | - Abigail M. Smith
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | | | - Thomas Schwaha
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
3
|
Schwaha T, Decker SH, Baranyi C, Saadi AJ. Rediscovering the unusual, solitary bryozoan Monobryozoon ambulans Remane, 1936: first molecular and new morphological data clarify its phylogenetic position. Front Zool 2024; 21:5. [PMID: 38443908 PMCID: PMC10913646 DOI: 10.1186/s12983-024-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND One of the most peculiar groups of the mostly colonial phylum Bryozoa is the taxon Monobryozoon, whose name already implies non-colonial members of the phylum. Its peculiarity and highly unusual lifestyle as a meiobenthic clade living on sand grains has fascinated many biologists. In particular its systematic relationship to other bryozoans remains a mystery. Despite numerous searches for M. ambulans in its type locality Helgoland, a locality with a long-lasting marine station and tradition of numerous courses and workshops, it has never been reencountered until today. Here we report the first observations of this almost mythical species, Monobryozoon ambulans. RESULTS For the first time since 1938, we present new modern, morphological analyses of this species as well as the first ever molecular data. Our detailed morphological analysis confirms most previous descriptions, but also ascertains the presence of special ambulatory polymorphic zooids. We consider these as bud anlagen that ultimately consecutively separate from the animal rendering it pseudo-colonial. The remaining morphological data show strong ties to alcyonidioidean ctenostome bryozoans. Our morphological data is in accordance with the phylogenomic analysis, which clusters it with species of Alcyonidium as a sister group to multiporate ctenostomes. Divergence time estimation and ancestral state reconstruction recover the solitary state of M. ambulans as a derived character that probably evolved in the Late Cretaceous. In this study, we also provide the entire mitogenome of M. ambulans, which-despite the momentary lack of comparable data-provides important data of a unique and rare species for comparative aspects in the future. CONCLUSIONS We were able to provide first sequence data and modern morphological data for the unique bryozoan, M. ambulans, which are both supporting an alcyonidioidean relationship within ctenostome bryozoans.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria.
| | - Sebastian H Decker
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria
| | - Christian Baranyi
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria
| | - Ahmed J Saadi
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria
| |
Collapse
|
4
|
Saadi AJ, de Oliveira AL, Kocot KM, Schwaha T. Genomic and transcriptomic survey of bryozoan Hox and ParaHox genes with emphasis on phylactolaemate bryozoans. BMC Genomics 2023; 24:711. [PMID: 38001438 PMCID: PMC10675955 DOI: 10.1186/s12864-023-09826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Bryozoans are mostly sessile aquatic colonial invertebrates belonging to the clade Lophotrochozoa, which unites many protostome bilaterian phyla such as molluscs, annelids and brachiopods. While Hox and ParaHox genes have been extensively studied in various lophotrochozoan lineages, investigations on Hox and ParaHox gene complements in bryozoans are scarce. RESULTS Herein, we present the most comprehensive survey of Hox and ParaHox gene complements in bryozoans using four genomes and 35 transcriptomes representing all bryozoan clades: Cheilostomata, Ctenostomata, Cyclostomata and Phylactolaemata. Using similarity searches, phylogenetic analyses and detailed manual curation, we have identified five Hox genes in bryozoans (pb, Dfd, Lox5, Lox4 and Post2) and one ParaHox gene (Cdx). Interestingly, we observed lineage-specific duplication of certain Hox and ParaHox genes (Dfd, Lox5 and Cdx) in some bryozoan lineages. CONCLUSIONS The bryozoan Hox cluster does not retain the ancestral lophotrochozoan condition but appears relatively simple (includes only five genes) and broken into two genomic regions, characterized by the loss and duplication of serval genes. Importantly, bryozoans share the lack of two Hox genes (Post1 and Scr) with their proposed sister-taxon, Phoronida, which suggests that those genes were missing in the most common ancestor of bryozoans and phoronids.
Collapse
Affiliation(s)
- Ahmed J Saadi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Schlachthausgasse 43, Vienna, A-1030, Austria.
| | - André Luiz de Oliveira
- Department of Symbiosis, Max-Planck-Institute for Marine Microbiology, Celsiustraße,1, D-28359, Bremen, Germany
| | - Kevin M Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Thomas Schwaha
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Schlachthausgasse 43, Vienna, A-1030, Austria
| |
Collapse
|
5
|
Grant HE, Ostrovsky AN, Jenkins HL, Vieira LM, Gordon DP, Foster PG, Kotenko ON, Smith AM, Berning B, Porter JS, Souto J, Florence WK, Tilbrook KJ, Waeschenbach A. Multiple evolutionary transitions of reproductive strategies in a phylum of aquatic colonial invertebrates. Proc Biol Sci 2023; 290:20231458. [PMID: 37909081 PMCID: PMC10618858 DOI: 10.1098/rspb.2023.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Parental care is considered crucial for the enhanced survival of offspring and evolutionary success of many metazoan groups. Most bryozoans incubate their young in brood chambers or intracoelomically. Based on the drastic morphological differences in incubation chambers across members of the order Cheilostomatida (class Gymnolaemata), multiple origins of incubation were predicted in this group. This hypothesis was tested by constructing a molecular phylogeny based on mitogenome data and nuclear rRNA genes 18S and 28S with the most complete sampling of taxa with various incubation devices to date. Ancestral character estimation suggested that distinct types of brood chambers evolved at least 10 times in Cheilostomatida. In Eucratea loricata and Aetea spp. brooding evolved unambiguously from a zygote-spawning ancestral state, as it probably did in Tendra zostericola, Neocheilostomata, and 'Carbasea' indivisa. In two further instances, brooders with different incubation chamber types, skeletal and non-skeletal, formed clades (Scruparia spp., Leiosalpinx australis) and (Catenicula corbulifera (Steginoporella spp. (Labioporella spp., Thalamoporella californica))), each also probably evolved from a zygote-spawning ancestral state. The modular nature of bryozoans probably contributed to the evolution of such a diverse array of embryonic incubation chambers, which included complex constructions made of polymorphic heterozooids, and maternal zooidal invaginations and outgrowths.
Collapse
Affiliation(s)
- Heather E. Grant
- Centre for Evolution and Cancer, The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
- Department of Science, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Andrew N. Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034 Saint Petersburg, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria
| | - Helen L. Jenkins
- Department of Science, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Leandro M. Vieira
- Department of Science, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Laboratório de Estudos de Bryozoa, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE 50670–810, Brazil
| | - Dennis P. Gordon
- National Institute of Water & Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6241, New Zealand
| | - Peter G. Foster
- Department of Science, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Olga N. Kotenko
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034 Saint Petersburg, Russia
| | - Abigail M. Smith
- Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Björn Berning
- Institute for Geology, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Campus de Ponta Delgada Apartado 1422, 9501-801 Ponta Delgada, Açores, Portugal
| | - Joanne S. Porter
- International Centre for Island Technology, Heriot Watt University, Orkney Campus, Robert Rendall Building, Franklin Road, Stromness, Orkney KW16 3AW, UK
| | - Javier Souto
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria
| | - Wayne K. Florence
- Research and Exhibitions Department, Iziko Museums of South Africa, PO Box 61, Cape Town 8000, South Africa
| | - Kevin J. Tilbrook
- Department of Science, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Andrea Waeschenbach
- Department of Science, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
6
|
Saadi AJ, Bibermair J, Kocot KM, Roberts NG, Hirose M, Calcino A, Baranyi C, Chaichana R, Wood TS, Schwaha T. Phylogenomics reveals deep relationships and diversification within phylactolaemate bryozoans. Proc Biol Sci 2022; 289:20221504. [PMID: 36350215 PMCID: PMC9653232 DOI: 10.1098/rspb.2022.1504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2023] Open
Abstract
Bryozoans are mostly sessile colonial invertebrates that inhabit all kinds of aquatic ecosystems. Extant bryozoan species fall into two clades with one of them, Phylactolaemata, being the only exclusively freshwater clade. Phylogenetic relationships within the class Phylactolaemata have long been controversial owing to their limited distinguishable characteristics that reflect evolutionary relationships. Here, we present the first phylogenomic analysis of Phylactolaemata using transcriptomic data combined with dense taxon sampling of six families to better resolve the interrelationships and to estimate divergence time. Using maximum-likelihood and Bayesian inference approaches, we recovered a robust phylogeny for Phylactolaemata in which the interfamilial relationships are fully resolved. We show Stephanellidae is the sister taxon of all other phylactolaemates and confirm that Lophopodidae represents the second offshoot within the phylactolaemate tree. Plumatella fruticosa clearly falls outside Plumatellidae as previous investigations have suggested, and instead clusters with Pectinatellidae and Cristatellidae as the sister taxon of Fredericellidae. Our results demonstrate that cryptic speciation is very likely in F. sultana and in two species of Plumatella (P. repens and P. casmiana). Divergence time estimates show that Phylactolaemata appeared at the end of the Ediacaran and started to diverge in the Silurian, although confidence intervals were large for most nodes. The radiation of most extant phylactolaemate families occurred mainly in the Palaeogene and Neogene highlighting post-extinction diversification.
Collapse
Affiliation(s)
- Ahmed J. Saadi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Julian Bibermair
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Kevin M. Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nickellaus G. Roberts
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Masato Hirose
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Andrew Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Christian Baranyi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Ratcha Chaichana
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, Thailand
| | - Timothy S. Wood
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Thomas Schwaha
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| |
Collapse
|