1
|
Pabst K, Gkanias E, Webb B, Homberg U, Endres D. A computational model for angular velocity integration in a locust heading circuit. PLoS Comput Biol 2024; 20:e1012155. [PMID: 39705331 DOI: 10.1371/journal.pcbi.1012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/06/2025] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Accurate navigation often requires the maintenance of a robust internal estimate of heading relative to external surroundings. We present a model for angular velocity integration in a desert locust heading circuit, applying concepts from early theoretical work on heading circuits in mammals to a novel biological context in insects. In contrast to similar models proposed for the fruit fly, this circuit model uses a single 360° heading direction representation and is updated by neuromodulatory angular velocity inputs. Our computational model was implemented using steady-state firing rate neurons with dynamical synapses. The circuit connectivity was constrained by biological data, and remaining degrees of freedom were optimised with a machine learning approach to yield physiologically plausible neuron activities. We demonstrate that the integration of heading and angular velocity in this circuit is robust to noise. The heading signal can be effectively used as input to an existing insect goal-directed steering circuit, adapted for outbound locomotion in a steady direction that resembles locust migration. Our study supports the possibility that similar computations for orientation may be implemented differently in the neural hardware of the fruit fly and the locust.
Collapse
Affiliation(s)
- Kathrin Pabst
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| | - Evripidis Gkanias
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Uwe Homberg
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Dominik Endres
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| |
Collapse
|
2
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Goulard R, Heinze S, Webb B. Emergent spatial goals in an integrative model of the insect central complex. PLoS Comput Biol 2023; 19:e1011480. [PMID: 38109465 PMCID: PMC10760860 DOI: 10.1371/journal.pcbi.1011480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The insect central complex appears to encode and process spatial information through vector manipulation. Here, we draw on recent insights into circuit structure to fuse previous models of sensory-guided navigation, path integration and vector memory. Specifically, we propose that the allocentric encoding of location provided by path integration creates a spatially stable anchor for converging sensory signals that is relevant in multiple behavioural contexts. The allocentric reference frame given by path integration transforms a goal direction into a goal location and we demonstrate through modelling that it can enhance approach of a sensory target in noisy, cluttered environments or with temporally sparse stimuli. We further show the same circuit can improve performance in the more complex navigational task of route following. The model suggests specific functional roles for circuit elements of the central complex that helps explain their high preservation across insect species.
Collapse
Affiliation(s)
- Roman Goulard
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|