1
|
Gregersen H. Novel Bionics Assessment of Anorectal Mechanosensory Physiology. Bioengineering (Basel) 2020; 7:E146. [PMID: 33202610 PMCID: PMC7712164 DOI: 10.3390/bioengineering7040146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomechatronics (bionics) is an applied science that creates interdisciplinary bonds between biology and engineering. The lower gastrointestinal (GI) tract is difficult to study but has gained interest in recent decades from a bionics point of view. Ingestible capsules that record physiological variables during GI transit have been developed and used for detailed analysis of colon transit and motility. Recently, a simulated stool named Fecobionics was developed. It has the consistency and shape of normal stool. Fecobionics records a variety of parameters including pressures, bending, and shape changes. It has been used to study defecation patterns in large animals and humans, including patients with symptoms of obstructed defecation and fecal incontinence. Recently, it was applied in a canine colon model where it revealed patterns consistent with shallow waves originating from slow waves generated by the interstitial Cells of Cajal. Novel analysis such as the "rear-front" pressure diagram and quantification of defecation indices has been developed for Fecobionics. GI research has traditionally been based on experimental approaches. Mathematical modeling is a unique way to deal with the complexity. This paper describes the Fecobionics technology, related mechano-physiological modeling analyses, and outlines perspectives for future applications.
Collapse
Affiliation(s)
- Hans Gregersen
- The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- California Medical Innovations Institute, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Peirlinck M, Debusschere N, Iannaccone F, Siersema PD, Verhegghe B, Segers P, De Beule M. An in silico biomechanical analysis of the stent–esophagus interaction. Biomech Model Mechanobiol 2017; 17:111-131. [DOI: 10.1007/s10237-017-0948-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
|
3
|
Du P, Yassi R, Gregersen H, Windsor JA, Hunter PJ. The virtual esophagus: investigating esophageal functions in silico. Ann N Y Acad Sci 2016; 1380:19-26. [PMID: 27310396 DOI: 10.1111/nyas.13089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 12/24/2022]
Abstract
Esophageal and gastroesophageal junction (GEJ) diseases are highly prevalent worldwide and are a significant socioeconomic burden. Recently, applications of multiscale mathematical models of the upper gastrointestinal tract have gained attention. These in silico investigations can contribute to the development of a virtual esophagus modeling framework as part of the larger GIome and Physiome initiatives. There are also other modeling investigations that have potential screening and treatment applications. These models incorporate detailed anatomical models of the esophagus and GEJ, tissue biomechanical properties and bolus transport, sensory properties, and, potentially, bioelectrical models of the neural and myogenic pathways of esophageal and GEJ functions. A next step is to improve the integration between the different components of the virtual esophagus, encoding standards, and simulation environments to perform more realistic simulations of normal and pathophysiological functions. Ultimately, the models will be validated and will provide predictive evaluations of the effects of novel endoscopic, surgical, and pharmaceutical treatment options and will facilitate the clinical translation of these treatments.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Rita Yassi
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Hans Gregersen
- GIOME Center, College of Bioengineering, Chongqing University, Chongqing, China
| | - John A Windsor
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Gregersen H, Liao D, Brasseur JG. The Esophagiome: concept, status, and future perspectives. Ann N Y Acad Sci 2016; 1380:6-18. [PMID: 27570939 DOI: 10.1111/nyas.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment.
Collapse
Affiliation(s)
- Hans Gregersen
- GIOME, College of Bioengineering, Chongqing University, China. .,GIOME, Department of Surgery, Prince of Wales Hospital, College of Medicine, Chinese University of Hong Kong, Hong Kong SAR.
| | - Donghua Liao
- GIOME Academy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James G Brasseur
- Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| |
Collapse
|
5
|
Prins A. The brain-gut interaction: the conversation and the implications. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2016. [DOI: 10.1080/16070658.2011.11734373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Gopirajah R, Anandharamakrishnan C. Advancement of Imaging and Modeling Techniques for Understanding Gastric Physical Forces on Food. FOOD ENGINEERING REVIEWS 2016. [DOI: 10.1007/s12393-016-9140-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering. Acta Biomater 2013; 9:9379-91. [PMID: 23933485 DOI: 10.1016/j.actbio.2013.07.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/11/2013] [Accepted: 07/31/2013] [Indexed: 12/23/2022]
Abstract
Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications.
Collapse
|
8
|
Sokolis DP. Structurally-motivated characterization of the passive pseudo-elastic response of esophagus and its layers. Comput Biol Med 2013; 43:1273-85. [DOI: 10.1016/j.compbiomed.2013.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 12/16/2022]
|
9
|
Frangi AF, Hose DR, Hunter PJ, Ayache N, Brooks D. Special issue on medical imaging and image computing in computational physiology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1-7. [PMID: 23409282 DOI: 10.1109/tmi.2012.2234320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
10
|
Abstract
Human defecation involves integrated and coordinated sensorimotor functions, orchestrated by central, spinal, peripheral (somatic and visceral), and enteric neural activities, acting on a morphologically intact gastrointestinal tract (including the final common path, the pelvic floor, and anal sphincters). The multiple factors that ultimately result in defecation are best appreciated by describing four temporally and physiologically fairly distinct phases. This article details our current understanding of normal defecation, including recent advances, but importantly identifies those areas where knowledge or consensus is still lacking. Appreciation of normal physiology is central to directed treatment of constipation and also of fecal incontinence, which are prevalent in the general population and cause significant morbidity.
Collapse
Affiliation(s)
- Somnath Palit
- Academic Surgical Unit (GI Physiology Unit), Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University, London, UK.
| | | | | |
Collapse
|
11
|
Stavropoulou EA, Dafalias YF, Sokolis DP. Biomechanical behavior and histological organization of the three-layered passive esophagus as a function of topography. Proc Inst Mech Eng H 2012; 226:477-90. [DOI: 10.1177/0954411912444073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The zero-stress state of the mucosa-submucosa and two muscle esophageal layers has been delineated, but their multi-axial response has not, because muscle dissection may not leave tubular specimens intact for inflation/extension testing. The histomechanical behavior of the three-layered porcine esophagus was investigated in this study, through light microscopic examination and uniaxial tension, with two-dimensional strain measurement in pairs of orthogonally oriented specimens. The two-dimensional Fung-type strain–energy function described suitably the pseudo-elastic tissue response, affording faithful simulations to our data. Differences in the scleroprotein content and configuration were identified as a function of layer, topography, and orientation, substantiating the macromechanical differences found. In view of the failure and optimized material parameters, the mucosa-submucosa was stronger and stiffer than muscle, associating it with a higher collagen content. A notable topographical distribution was apparent, with data for the abdominal region differentiated from that for the cervical region, owing to the existence of inner muscle with a circumferential arrangement and of outer muscle with a longitudinal arrangement in the former region, and of both muscle layers with oblique arrangement in the latter region, with thoracic esophagus being a transition zone. Tissue from the mucosa-submucosa was stronger and stiffer longitudinally, relating with a preferential collagen reinforcement along that axis, but more extensible in the orthogonal axis.
Collapse
Affiliation(s)
- Eleni A Stavropoulou
- Laboratory of Biomechanics, Academy of Athens, Greece
- Department of Mechanics, National Technical University of Athens, Greece
| | - Yannis F Dafalias
- Department of Mechanics, National Technical University of Athens, Greece
- Department of Civil and Environmental Engineering, University of California, USA
| | | |
Collapse
|
12
|
Sokolis DP. Strain-energy function and three-dimensional stress distribution in esophageal biomechanics. J Biomech 2010; 43:2753-64. [PMID: 20705294 DOI: 10.1016/j.jbiomech.2010.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/06/2010] [Accepted: 06/07/2010] [Indexed: 02/07/2023]
Abstract
Knowledge of the transmural stress and stretch fields in esophageal wall is necessary to quantify growth and remodeling, and the response to mechanically based clinical interventions or traumatic injury, but there are currently conflicting reports on this issue and the mechanical properties of intact esophagus have not been rigorously addressed. This paper offers multiaxial data on rabbit esophagus, warranted for proper identification of the 3D mechanical properties. The Fung-type strain-energy function was adopted to model our data for esophagus, taken as a thick-walled (1 or 2-layer) tubular structure subjected to inflation and longitudinal extension. Accurate predictions of the pressure-radius-force data were obtained using the 1-layer model, covering a broad range of extensions; the calculated material parameters indicated that intact wall was equally stiff as mucosa-submucosa, but stiffer than muscle in both principal axes, and tissue was stiffer longitudinally, concurring our histological findings (Stavropoulou et al., Journal of Biomechanics. 42 (2009) 2654-2663). Employing the material parameters of individual layers, with reference to their zero-stress state, a reasonable fit was obtained to the data for intact wall, modeled as a 2-layer tissue. Different from the stress distributions presented hitherto in the esophagus literature, consideration of residual stresses led to less dramatic homogenization of stresses under loading. Comparison of the 1- and 2-layer models of esophagus demonstrated that heterogeneity induced a more uniform distribution of residual stresses in each layer, a discontinuity in circumferential and longitudinal stresses at the interface among layers, and a considerable rise of stresses in mucosa, with a reduction in muscle.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Foundation of Biomedical Research, Academy of Athens, Athens, Greece.
| |
Collapse
|
13
|
Abstract
The gastrointestinal (GI) tract is the system of organs within multi-cellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining waste. The various patterns of GI tract function are generated by the integrated behaviour of multiple tissues and cell types. A thorough study of the GI tract requires understanding of the interactions between cells, tissues and gastrointestinal organs in health and disease. This depends on knowledge, not only of numerous cellular ionic current mechanisms and signal transduction pathways, but also of large scale GI tissue structures and the special distribution of the nervous network. A unique way of coping with this explosion in complexity is mathematical and computational modelling; providing a computational framework for the multilevel modelling and simulation of the human gastrointestinal anatomy and physiology. The aim of this review is to describe the current status of biomechanical modelling work of the GI tract in humans and animals, which can be further used to integrate the physiological, anatomical and medical knowledge of the GI system. Such modelling will aid research and ensure that medical professionals benefit, through the provision of relevant and precise information about the patient’s condition and GI remodelling in animal disease models. It will also improve the accuracy and efficiency of medical procedures, which could result in reduced cost for diagnosis and treatment.
Collapse
|
14
|
Kohl P, Coveney P, Clapworthy G, Viceconti M. The virtual physiological human. Editorial. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3223-3224. [PMID: 18593665 DOI: 10.1098/rsta.2008.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|