1
|
Shakya A, Ghosh DB, Jackson C, Morra G, Karki BB. Insights into core-mantle differentiation from bulk Earth melt simulations. Sci Rep 2024; 14:18739. [PMID: 39138361 PMCID: PMC11322187 DOI: 10.1038/s41598-024-69873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
The earth is thought to have gone through complex physicochemical changes during the accretion and magma ocean stages. To better understand this evolution process at the fundamental level, we investigate the behavior of a bulk earth melt system by simulating the composition Fe35.7Mg19.0Si15.2O30.2 (in wt%) at high pressure. A deep neural network potential trained by first-principles data can enable accurate molecular dynamics simulation of large supercells that greatly enhances sampling for reliable evaluation of elemental partitioning. Our simulated system undergoes a phase separation in which the four elements clump together to different extents into two major domains. Based on the coordination and space-decomposition analyses, the inferred composition at 3000 K and 29.1 GPa contains 96.2, 0.1, 1.9 and 1.7 wt% of Fe, Mg, Si, and O, respectively, for the one domain and the corresponding elemental proportions are 3.0, 29.7, 22.0, and 45.3 wt% for the other domain. The predicted segregation thus leads to the formation of an iron-rich phase which corresponds to the metallic core and a magma ocean phase which corresponds to the silicate mantle. The metallic domain incorporates more silicon and more oxygen whereas the magma ocean domain gains more iron oxides at higher temperatures. Our predicted compositions compare favorably with those derived from experimental work for the equilibrium state metal and silicate reacting under high-pressure conditions.
Collapse
Affiliation(s)
- Abin Shakya
- School of Electrical Engineering and Computer Science, Department of Geology and Geophysics, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dipta B Ghosh
- School of Electrical Engineering and Computer Science, Department of Geology and Geophysics, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Colin Jackson
- Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, 70118, USA
| | - Gabriele Morra
- Department of Physics, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Bijaya B Karki
- School of Electrical Engineering and Computer Science, Department of Geology and Geophysics, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
2
|
Leone G, Tanaka HK. Igneous processes in the small bodies of the Solar System I. Asteroids and comets. iScience 2023; 26:107160. [PMID: 37534155 PMCID: PMC10391981 DOI: 10.1016/j.isci.2023.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Igneous processes were quite widespread in the small bodies of the Solar System (SBSS) and were initially fueled by short-lived radioisotopes, the proto-Sun, impact heating, and differentiation heating. Once they finished, long-lived radioisotopes continued to warm the active bodies of the Earth, (possibly) Venus, and the cryovolcanism of Enceladus. The widespread presence of olivine and pyroxenes in planets and also in SBSS suggests that they were not necessarily the product of igneous processes and they might have been recycled from previous nebular processes or entrained in comets from interstellar space. The difference in temperature between the inner and the outer Solar System has clearly favored thermal annealing of the olivine close to the proto-Sun. Transport of olivine within the Solar System probably occurred also due to protostellar jets and winds but the entrainment in SBSS from interstellar space would overcome the requirement of initial turbulent regime in the protoplanetary nebula.
Collapse
Affiliation(s)
- Giovanni Leone
- Instituto de Investigación en Astronomía y Ciencias Planetarias, Universidad de Atacama, Chile
- Virtual Muography Institute, Global, Tokyo, Japan
| | - Hiroyuki K.M. Tanaka
- Virtual Muography Institute, Global, Tokyo, Japan
- International Muography Research Organization (MUOGRAPHIX), The University of Tokyo, Japan
- Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
3
|
Brennan MC, Fischer RA, Nimmo F, O’Brien DP. Timing of Martian Core Formation from Models of Hf-W Evolution Coupled with N-body Simulations. GEOCHIMICA ET COSMOCHIMICA ACTA 2022; 316:295-308. [PMID: 34866645 PMCID: PMC8637548 DOI: 10.1016/j.gca.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining how and when Mars formed has been a long-standing challenge for planetary scientists. The size and orbit of Mars are difficult to reproduce in classical simulations of planetary accretion, and this has inspired models of inner solar system evolution that are tuned to produce Mars-like planets. However, such models are not always coupled to geochemical constraints. Analyses of Martian meteorites using the extinct hafnium-tungsten (Hf-W) radioisotopic system, which is sensitive to the timing of core formation, have indicated that the Martian core formed within a few million years of the start of the solar system itself. This has been interpreted to suggest that, unlike Earth's protracted accretion, Mars grew to its modern size very rapidly. These arguments, however, generally rely on simplified growth histories for Mars. Here, we combine likely accretionary histories from a large number of N-body simulations with calculations of metal-silicate partitioning and Hf-W isotopic evolution during core formation to constrain the range of conditions that could have produced Mars. We find that there is no strong correlation between the final masses or orbits of simulated Martian analogs and their 182W anomalies, and that it is readily possible to produce Mars-like Hf-W isotopic compositions for a variety of accretionary conditions. The Hf-W signature of Mars is very sensitive to the oxygen fugacity (fO2) of accreted material because the metal-silicate partitioning behavior of W is strongly dependent on redox conditions. The average fO2 of Martian building blocks must fall in the range of 1.3-1.6 log units below the iron-wüstite buffer to produce a Martian mantle with the observed Hf/W ratio. Other geochemical properties (such as sulfur content) also influence Martian 182W signatures, but the timing of accretion is a more important control. We find that while Mars must have accreted most of its mass within ~5 million years of solar system formation to reproduce the Hf-W isotopic constraints, it may have continued growing afterwards for over 50 million years. There is a high probability of simultaneously matching the orbit, mass, and Hf-W signature of Mars even in cases of prolonged accretion if giant impactor cores were poorly equilibrated and merged directly with the proto-Martian core.
Collapse
Affiliation(s)
- Matthew C. Brennan
- Department of Earth and Planetary Sciences, Harvard University (20 Oxford Street, Cambridge, MA 02138, USA)
| | - Rebecca A. Fischer
- Department of Earth and Planetary Sciences, Harvard University (20 Oxford Street, Cambridge, MA 02138, USA)
| | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California Santa Cruz (1156 High Street, Santa Cruz, CA 95064, USA)
| | - David P. O’Brien
- Planetary Science Institute (1700 East Fort Lowell, Tucson, AZ 85719-2395, USA)
| |
Collapse
|
4
|
Sleep NH. Asteroid bombardment and the core of Theia as possible sources for the Earth's late veneer component. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2016; 17:2623-2642. [PMID: 35095346 PMCID: PMC8793101 DOI: 10.1002/2016gc006305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The silicate Earth contains Pt-group elements in roughly chondritic relative ratios, but with absolute concentrations <1% chondrite. This veneer implies addition of chondrite-like material with 0.3-0.7% mass of the Earth's mantle or an equivalent planet-wide thickness of 5-20 km. The veneer thickness, 200-300 m, within the lunar crust and mantle is much less. One hypothesis is that the terrestrial veneer arrived after the moon-forming impact within a few large asteroids that happened to miss the smaller Moon. Alternatively, most of terrestrial veneer came from the core of the moon-forming impactor, Theia. The Moon then likely contains iron from Theia's core. Mass balances lend plausibility. The lunar core mass is ~1.6 × 1021 kg and the excess FeO component in the lunar mantle is 1.3-3.5 × 1021 kg as Fe, totaling 3-5 × 1021 kg or a few percent of Theia's core. This mass is comparable to the excess Fe of 2.3-10 × 1021 kg in the Earth's mantle inferred from the veneer component. Chemically in this hypothesis, Fe metal from Theia's core entered the Moon-forming disk. H2O and Fe2O3 in the disk oxidized part of the Fe, leaving the lunar mantle near a Fe-FeO buffer. The remaining iron metal condensed, gathered Pt-group elements eventually into the lunar core. The silicate Moon is strongly depleted in Pt-group elements. In contrast, the Earth's mantle contained excess oxidants, H2O and Fe2O3, which quantitatively oxidized the admixed Fe from Theia's core, retaining Pt-group elements. In this hypothesis, asteroid impacts were relatively benign with ~1 terrestrial event that left only thermophile survivors.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
O'Rourke JG, Stevenson DJ. Powering Earth's dynamo with magnesium precipitation from the core. Nature 2016; 529:387-9. [PMID: 26791727 DOI: 10.1038/nature16495] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 11/26/2015] [Indexed: 11/09/2022]
Abstract
Earth's global magnetic field arises from vigorous convection within the liquid outer core. Palaeomagnetic evidence reveals that the geodynamo has operated for at least 3.4 billion years, which places constraints on Earth's formation and evolution. Available power sources in standard models include compositional convection (driven by the solidifying inner core's expulsion of light elements), thermal convection (from slow cooling), and perhaps heat from the decay of radioactive isotopes. However, recent first-principles calculations and diamond-anvil cell experiments indicate that the thermal conductivity of iron is two or three times larger than typically assumed in these models. This presents a problem: a large increase in the conductive heat flux along the adiabat (due to the higher conductivity of iron) implies that the inner core is young (less than one billion years old), but thermal convection and radiogenic heating alone may not have been able to sustain the geodynamo during earlier epochs. Here we show that the precipitation of magnesium-bearing minerals from the core could have served as an alternative power source. Equilibration at high temperatures in the aftermath of giant impacts allows a small amount of magnesium (one or two weight per cent) to partition into the core while still producing the observed abundances of siderophile elements in the mantle and avoiding an excess of silicon and oxygen in the core. The transport of magnesium as oxide or silicate from the cooling core to underneath the mantle is an order of magnitude more efficient per unit mass as a source of buoyancy than inner-core growth. We therefore conclude that Earth's dynamo would survive throughout geologic time (from at least 3.4 billion years ago to the present) even if core radiogenic heating were minimal and core cooling were slow.
Collapse
Affiliation(s)
- Joseph G O'Rourke
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - David J Stevenson
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
6
|
Dauphas N, Burkhardt C, Warren PH, Fang-Zhen T. Geochemical arguments for an Earth-like Moon-forming impactor. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130244. [PMID: 25114316 PMCID: PMC4128266 DOI: 10.1098/rsta.2013.0244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Geochemical evidence suggests that the material accreted by the Earth did not change in nature during Earth's accretion, presumably because the inner protoplanetary disc had uniform isotopic composition similar to enstatite chondrites, aubrites and ungrouped achondrite NWA 5363/5400. Enstatite meteorites and the Earth were derived from the same nebular reservoir but diverged in their chemical evolutions, so no chondrite sample in meteorite collections is representative of the Earth's building blocks. The similarity in isotopic composition (Δ(17)O, ε(50)Ti and ε(54)Cr) between lunar and terrestrial rocks is explained by the fact that the Moon-forming impactor came from the same region of the disc as other Earth-forming embryos, and therefore was similar in isotopic composition to the Earth. The heavy δ(30)Si values of the silicate Earth and the Moon relative to known chondrites may be due to fractionation in the solar nebula/protoplanetary disc rather than partitioning of silicon in Earth's core. An inversion method is presented to calculate the Hf/W ratios and ε(182)W values of the proto-Earth and impactor mantles for a given Moon-forming impact scenario. The similarity in tungsten isotopic composition between lunar and terrestrial rocks is a coincidence that can be explained in a canonical giant impact scenario if an early formed embryo (two-stage model age of 10-20 Myr) collided with the proto-Earth formed over a more protracted accretion history (two-stage model age of 30-40 Myr).
Collapse
Affiliation(s)
- Nicolas Dauphas
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Christoph Burkhardt
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Paul H Warren
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA
| | - Teng Fang-Zhen
- Isotope Laboratory, Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Elkins-Tanton LT, Bercovici D. Contraction or expansion of the Moon's crust during magma ocean freezing? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130240. [PMID: 25114310 PMCID: PMC4128263 DOI: 10.1098/rsta.2013.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle.
Collapse
Affiliation(s)
- Linda T Elkins-Tanton
- Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington DC, USA
| | - David Bercovici
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Abstract
The compositions of Earth materials are strikingly similar to those of enstatite chondrite meteorites in many isotope systems. Although this suggests that Earth largely accreted from enstatite chondrites, definitive proof of this model has been lacking. By comparing the silicon (Si) isotope signatures of several extraterrestrial materials with terrestrial samples, we show that they cannot be explained by core-formation scenarios involving a bulk Earth of enstatite chondrite composition. Si isotope similarities between the bulk silicate Earth and the Moon preclude the existence of a hidden reservoir in the lower mantle, a necessary condition of the enstatite chondrite model, and require an equilibrium process after the Moon-forming impact. A three-end-member chondritic mixing model for Earth reconciles the Si isotope similarities between enstatite chondrites and Earth.
Collapse
Affiliation(s)
- Caroline Fitoussi
- Laboratoire de Géologie de Lyon, ENS Lyon, CNRS and Université Claude Bernard de Lyon, Lyon, France.
| | | |
Collapse
|
9
|
Jephcoat AP, Bouhifd MA, Porcelli D. Partitioning experiments in the laser-heated diamond anvil cell: volatile content in the Earth's core. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4295-4314. [PMID: 18852112 DOI: 10.1098/rsta.2008.0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present state of the Earth evolved from energetic events that were determined early in the history of the Solar System. A key process in reconciling this state and the observable mantle composition with models of the original formation relies on understanding the planetary processing that has taken place over the past 4.5Ga. Planetary size plays a key role and ultimately determines the pressure and temperature conditions at which the materials of the early solar nebular segregated. We summarize recent developments with the laser-heated diamond anvil cell that have made possible extension of the conventional pressure limit for partitioning experiments as well as the study of volatile trace elements. In particular, we discuss liquid-liquid, metal-silicate (M-Sil) partitioning results for several elements in a synthetic chondritic mixture, spanning a wide range of atomic number-helium to iodine. We examine the role of the core as a possible host of both siderophile and trace elements and the implications that early segregation processes at deep magma ocean conditions have for current mantle signatures, both compositional and isotopic. The results provide some of the first experimental evidence that the core is the obvious replacement for the long-sought, deep mantle reservoir. If so, they also indicate the need to understand the detailed nature and scale of core-mantle exchange processes, from atomic to macroscopic, throughout the age of the Earth to the present day.
Collapse
|
10
|
Ballentine CJ, Holland G. What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4183-4203. [PMID: 18826923 DOI: 10.1098/rsta.2008.0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Study of commercially produced volcanic CO2 gas associated with the Colorado Plateau, USA, has revealed substantial new information about the noble gas isotopic composition and elemental abundance pattern of the mantle. Combined with published data from mid-ocean ridge basalts, it is now clear that the convecting mantle has a maximum (20)Ne/(22)Ne isotopic composition, indistinguishable from that attributed to solar wind-implanted (SWI) neon in meteorites. This is distinct from the higher (20)Ne/(22)Ne isotopic value expected for solar nebula gases. The non-radiogenic xenon isotopic composition of the well gases shows that 20 per cent of the mantle Xe is 'solar-like' in origin, but cannot resolve the small isotopic difference between the trapped meteorite 'Q'-component and solar Xe. The mantle primordial (20)Ne/(132)Xe is approximately 1400 and is comparable with the upper end of that observed in meteorites. Previous work using the terrestrial (129)I - (129)Xe mass balance demands that almost 99 per cent of the Xe (and therefore other noble gases) has been lost from the accreting solids and that Pu-I closure age models have shown this to have occurred in the first ca 100Ma of the Earth's history. The highest concentrations of Q-Xe and solar wind-implanted (SWI)-Ne measured in meteorites allow for this loss and these high-abundance samples have a Ne/Xe ratio range compatible with the 'recycled-air-corrected' terrestrial mantle. These observations do not support models in which the terrestrial mantle acquired its volatiles from the primary capture of solar nebula gases and, in turn, strongly suggest that the primary terrestrial atmosphere, before isotopic fractionation, is most probably derived from degassed trapped volatiles in accreting material.By contrast, the non-radiogenic argon, krypton and 80 per cent of the xenon in the convecting mantle have the same isotopic composition and elemental abundance pattern as that found in seawater with a small sedimentary Kr and Xe admix. These mantle heavy noble gases are dominated by recycling of air dissolved in seawater back into the mantle. Numerical simulations suggest that plumes sampling the core-mantle boundary would be enriched in seawater-derived noble gases compared with the convecting mantle, and therefore have substantially lower (40)Ar/(36)Ar. This is compatible with observation. The subduction process is not a complete barrier to volatile return to the mantle.
Collapse
Affiliation(s)
- Chris J Ballentine
- School of Earth, Environmental and Atmospheric Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | |
Collapse
|