1
|
Yue WC, Yuan Z, Huang P, Sun Y, Gao T, Lyu YY, Tu X, Dong S, He L, Dong Y, Cao X, Kang L, Wang H, Wu P, Nisoli C, Wang YL. Toroidic phase transitions in a direct-kagome artificial spin ice. NATURE NANOTECHNOLOGY 2024; 19:1101-1107. [PMID: 38684808 DOI: 10.1038/s41565-024-01666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Ferrotoroidicity-the fourth form of primary ferroic order-breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a cross-over to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials.
Collapse
Affiliation(s)
- Wen-Cheng Yue
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Zixiong Yuan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Peiyuan Huang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Yizhe Sun
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Tan Gao
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Yang-Yang Lyu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Xuecou Tu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Sining Dong
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China.
| | - Liang He
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Ying Dong
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, China
| | - Xun Cao
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Lin Kang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Huabing Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
| | - Peiheng Wu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Yong-Lei Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China.
| |
Collapse
|
2
|
Yue WC, Yuan Z, Lyu YY, Dong S, Zhou J, Xiao ZL, He L, Tu X, Dong Y, Wang H, Xu W, Kang L, Wu P, Nisoli C, Kwok WK, Wang YL. Crystallizing Kagome Artificial Spin Ice. PHYSICAL REVIEW LETTERS 2022; 129:057202. [PMID: 35960577 DOI: 10.1103/physrevlett.129.057202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Artificial spin ices are engineered arrays of dipolarly coupled nanobar magnets. They enable direct investigations of fascinating collective phenomena from their diverse microstates. However, experimental access to ground states in the geometrically frustrated systems has proven difficult, limiting studies and applications of novel properties and functionalities from the low energy states. Here, we introduce a convenient approach to control the competing diploar interactions between the neighboring nanomagnets, allowing us to tailor the vertex degeneracy of the ground states. We achieve this by tuning the length of selected nanobar magnets in the spin ice lattice. We demonstrate the effectiveness of our method by realizing multiple low energy microstates in a kagome artificial spin ice, particularly the hardly accessible long range ordered ground state-the spin crystal state. Our strategy can be directly applied to other artificial spin systems to achieve exotic phases and explore new emergent collective behaviors.
Collapse
Affiliation(s)
- Wen-Cheng Yue
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zixiong Yuan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yang-Yang Lyu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Sining Dong
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Zhou
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zhi-Li Xiao
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - Liang He
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Ying Dong
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Weiwei Xu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Wai-Kwong Kwok
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yong-Lei Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
3
|
Chaurasiya A, Anand M, Rawat RS. Controlling degeneracy and magnetization switching in an artificial spin ice system of peanut-shaped nanomagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:275801. [PMID: 35413699 DOI: 10.1088/1361-648x/ac66b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Using extensive numerical simulations, we probe the magnetization switching in a two-dimensional artificial spin ice (ASI) system consisting of peanut-shaped nanomagnets. We also investigated the effect of external magnetic field on the degeneracy of the magnetic states in such a system. The switching field is found to be one order smaller in the proposed ASI system with peanut-shaped nanomagnets as compared to the conventionally used highly-anisotropic nanoisland such as elliptically shaped nanomagnets. The metastable two-in/two-out (Type II) magnetic state is robust at the remanence. We are also able to access the other possible microstate corresponding to Type II magnetic configurations by carefully varying the external magnetic field. It implies that one can control the degeneracy of the magnetic state by an application of suitable magnetic field. Interestingly, the magnetic charge neutrality at the vertex breaks due to the defects induced by removing nanomagnets. In such a case, the system also appears to have one-out/three-in or three-out/one-in (Type III) spin state, reminiscent of magnetic monopole at the vertex. We believe that our study is highly desirable in the context of developing the next-generation spintronics-based devices for future technologies.
Collapse
Affiliation(s)
- Avinash Chaurasiya
- Natural Sciences and Science Education, NIE, Nanyang Technological University, 637616, Singapore
| | - Manish Anand
- Department of Physics, Bihar National College, Patna University, Patna-800004, India
| | - Rajdeep Singh Rawat
- Natural Sciences and Science Education, NIE, Nanyang Technological University, 637616, Singapore
| |
Collapse
|
4
|
Bingham NS, Rooke S, Park J, Simon A, Zhu W, Zhang X, Batley J, Watts JD, Leighton C, Dahmen KA, Schiffer P. Experimental Realization of the 1D Random Field Ising Model. PHYSICAL REVIEW LETTERS 2021; 127:207203. [PMID: 34860045 DOI: 10.1103/physrevlett.127.207203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
We have measured magnetic-field-induced avalanches in a square artificial spin ice array of interacting nanomagnets. Starting from the ground state ordered configuration, we imaged the individual nanomagnet moments after each successive application of an incrementally increasing field. The statistics of the evolution of the moment configuration show good agreement with the canonical one-dimensional random field Ising model. We extract information about the microscopic structure of the arrays from our macroscopic measurements of their collective behavior, demonstrating a process that could be applied to other systems exhibiting avalanches.
Collapse
Affiliation(s)
- N S Bingham
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - S Rooke
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - J Park
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - A Simon
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - W Zhu
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - X Zhang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - J Batley
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J D Watts
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - C Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - K A Dahmen
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - P Schiffer
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
5
|
Thermally and field-driven mobility of emergent magnetic charges in square artificial spin ice. Sci Rep 2019; 9:15989. [PMID: 31690773 PMCID: PMC6831649 DOI: 10.1038/s41598-019-52460-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/14/2019] [Indexed: 12/03/2022] Open
Abstract
Designing and constructing model systems that embody the statistical mechanics of frustration is now possible using nanotechnology. We have arranged nanomagnets on a two-dimensional square lattice to form an artificial spin ice, and studied its fractional excitations, emergent magnetic monopoles, and how they respond to a driving field using X-ray magnetic microscopy. We observe a regime in which the monopole drift velocity is linear in field above a critical field for the onset of motion. The temperature dependence of the critical field can be described by introducing an interaction term into the Bean-Livingston model of field-assisted barrier hopping. By analogy with electrical charge drift motion, we define and measure a monopole mobility that is larger both for higher temperatures and stronger interactions between nanomagnets. The mobility in this linear regime is described by a creep model of zero-dimensional charges moving within a network of quasi-one-dimensional objects.
Collapse
|
6
|
Li Y, Paterson GW, Macauley GM, Nascimento FS, Ferguson C, Morley SA, Rosamond MC, Linfield EH, MacLaren DA, Macêdo R, Marrows CH, McVitie S, Stamps RL. Superferromagnetism and Domain-Wall Topologies in Artificial "Pinwheel" Spin Ice. ACS NANO 2019; 13:2213-2222. [PMID: 30588800 DOI: 10.1021/acsnano.8b08884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in "pinwheel" artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45° rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation. We observe several domain-wall configurations, most of which are direct analogues to those seen in continuous ferromagnetic films. However, charged walls also appear due to the geometric constraints of the system. Changing the orientation of the external magnetic field allows control of the nature of the spin reversal with the emergence of either one- or two-dimensional avalanches. This property of pinwheel ASI could be employed to tune devices based on magnetotransport phenomena such as Hall circuits.
Collapse
Affiliation(s)
- Yue Li
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Gary W Paterson
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Gavin M Macauley
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Fabio S Nascimento
- Departamento de Física , Universidade Federal de Viçosa , Viçosa 36570-900 , Minas Gerais , Brazil
| | - Ciaran Ferguson
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Sophie A Morley
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Department of Physics , University of California , Santa Cruz , California 95064 , United States
| | - Mark C Rosamond
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Edmund H Linfield
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Donald A MacLaren
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Rair Macêdo
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Christopher H Marrows
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Stephen McVitie
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Robert L Stamps
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow G12 8QQ , United Kingdom
- Department of Physics and Astronomy , University of Manitoba , Manitoba R3T 2N2 , Canada
| |
Collapse
|
7
|
Glavic A, Summers B, Dahal A, Kline J, Van Herck W, Sukhov A, Ernst A, Singh DK. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700856. [PMID: 29721429 PMCID: PMC5908362 DOI: 10.1002/advs.201700856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 06/08/2023]
Abstract
The nature of magnetic correlation at low temperature in two-dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature-dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature-dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature-dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure.
Collapse
Affiliation(s)
- Artur Glavic
- Laboratory for Neutron Scattering and ImagingPaul Scherrer Institut5232Villigen PSISwitzerland
| | - Brock Summers
- Department of Physics and AstronomyUniversity of MissouriColumbiaMO65211USA
| | - Ashutosh Dahal
- Department of Physics and AstronomyUniversity of MissouriColumbiaMO65211USA
| | - Joseph Kline
- National Institute of Standards and TechnologyGaithersburgMD20899USA
| | - Walter Van Herck
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier‐Leibnitz Zentrum (MLZ)Forschungszentrum Jülich GmbHLichtenbergstr. 185748GarchingGermany
| | - Alexander Sukhov
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)90429NürnbergGermany
| | - Arthur Ernst
- Institut für Theoretische PhysikJohannes Kepler UniversitätA 4040LinzAustria
- Max‐Planck‐Institut für MikrostrukturphysikWeinberg 206120HalleGermany
| | - Deepak K. Singh
- Department of Physics and AstronomyUniversity of MissouriColumbiaMO65211USA
| |
Collapse
|
8
|
Summers B, Chen Y, Dahal A, Singh DK. New Description of Evolution of Magnetic Phases in Artificial Honeycomb Lattice. Sci Rep 2017; 7:16080. [PMID: 29167461 PMCID: PMC5700068 DOI: 10.1038/s41598-017-15786-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/01/2017] [Indexed: 11/08/2022] Open
Abstract
Artificial magnetic honeycomb lattice provides a two-dimensional archetypal system to explore novel phenomena of geometrically frustrated magnets. According to theoretical reports, an artificial magnetic honeycomb lattice is expected to exhibit several phase transitions to unique magnetic states as a function of reducing temperature. Experimental investigations of permalloy artificial honeycomb lattice of connected ultra-small elements, [Formula: see text] 12 nm, reveal a more complicated behavior. First, upon cooling the sample to intermediate temperature, [Formula: see text] 175 K, the system manifests a non-unique state where the long range order co-exists with short-range magnetic charge order and weak spin ice state. Second, at much lower temperature, [Formula: see text] 6 K, the long-range spin solid state exhibits a re-entrant behavior. Both observations are in direct contrast to the present understanding of this system. New theoretical approaches are needed to develop a comprehensive formulation of this two dimensional magnet.
Collapse
Affiliation(s)
- B Summers
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Y Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - A Dahal
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - D K Singh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
9
|
Samardak A, Anisimova M, Samardak A, Ognev A. Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:976-986. [PMID: 25977869 PMCID: PMC4419585 DOI: 10.3762/bjnano.6.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5-30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices.
Collapse
Affiliation(s)
- Alexander Samardak
- Laboratory of Thin Film Technologies, School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950, Russia
| | - Margarita Anisimova
- Laboratory of Thin Film Technologies, School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950, Russia
| | - Aleksei Samardak
- Laboratory of Thin Film Technologies, School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950, Russia
| | - Alexey Ognev
- Laboratory of Thin Film Technologies, School of Natural Sciences, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950, Russia
| |
Collapse
|
10
|
Kashyap S, Woehl TJ, Liu X, Mallapragada SK, Prozorov T. Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. ACS NANO 2014; 8:9097-9106. [PMID: 25162493 DOI: 10.1021/nn502551y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic-inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.
Collapse
Affiliation(s)
- Sanjay Kashyap
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
| | | | | | | | | |
Collapse
|
11
|
Heyderman LJ, Stamps RL. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:363201. [PMID: 23948652 DOI: 10.1088/0953-8984/25/36/363201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.
Collapse
Affiliation(s)
- L J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| | | |
Collapse
|
12
|
Farhan A, Derlet PM, Kleibert A, Balan A, Chopdekar RV, Wyss M, Perron J, Scholl A, Nolting F, Heyderman LJ. Direct observation of thermal relaxation in artificial spin ice. PHYSICAL REVIEW LETTERS 2013; 111:057204. [PMID: 23952441 DOI: 10.1103/physrevlett.111.057204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/02/2013] [Indexed: 06/02/2023]
Abstract
We study the thermal relaxation of artificial spin ice with photoemission electron microscopy, and are able to directly observe how such a system finds its way from an energetically excited state to the ground state. On plotting vertex-type populations as a function of time, we can characterize the relaxation, which occurs in two stages, namely a string and a domain regime. Kinetic Monte Carlo simulations agree well with the temporal evolution of the magnetic state when including disorder, and the experimental results can be explained by considering the effective interaction energy associated with the separation of pairs of vertex excitations.
Collapse
Affiliation(s)
- A Farhan
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Branford WR. Emergent magnetic monopoles in frustrated magnetic systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:5702-5704. [PMID: 23166375 PMCID: PMC3497061 DOI: 10.1098/rsta.2011.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- W R Branford
- Department of Physics and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|