1
|
Mikhailov A, Deresz K, Tiognou AT, Kostin G, Lassalle-Kaiser B, Schaniel D. Electronic structure of light-induced nitrosyl linkage isomers revealed by X-ray absorption spectroscopy at Ru L 3,2-edges. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125053. [PMID: 39241399 DOI: 10.1016/j.saa.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
X-ray absorption spectroscopy (XAS) is a powerful tool for examining changes of the electronic and molecular structure following light-induced excitation of a molecule. Specifically, this method can be applied to investigate the ground (GS, RuNO) and metastable states (MS1, RuON and MS2, Ruη2(NO)) of the nitrosyl ligand (NO), which differ in their coordination mode to the metal. In this work, we report for the first time experimental and theoretical (DFT) Ru L3,2-edge XA spectra for the octahedral complex trans-[RuNOPy4F](ClO4)2 (1, Py = pyridine) in both ground and metastable states. The transition from GS to MS1 using 420 nm light excitation leads to a significant downshift of the 2p → LUMO(+1) peaks by about 0.5-0.8 eV, attributed to the destabilisation of 2p orbitals and stabilization of LUMO(+1). Subsequent irradiation of MS1 at 920 nm produces isomer MS2, for which even greater stabilization of LUMO occurs, though without a significant change in 2p energy. The change in 2p energy is attributed to a variation in the charge on the Ru atom after NO isomerization, while LUMO(+1) stabilization is related to changes in the Ru(NO) bond length and the composition of this orbital.
Collapse
Affiliation(s)
- Artem Mikhailov
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France.
| | - Krystyna Deresz
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France; Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Gennadiy Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | | | - Dominik Schaniel
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France
| |
Collapse
|
2
|
Levell Z, Le J, Yu S, Wang R, Ethirajan S, Rana R, Kulkarni A, Resasco J, Lu D, Cheng J, Liu Y. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Chem Rev 2024; 124:8620-8656. [PMID: 38990563 DOI: 10.1021/acs.chemrev.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudheesh Ethirajan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Cercola R, Wong NGK, Rhodes C, Olijnyk L, Mistry NS, Hall LM, Berenbeim JA, Lynam JM, Dessent CEH. A "one pot" mass spectrometry technique for characterizing solution- and gas-phase photochemical reactions by electrospray mass spectrometry. RSC Adv 2021; 11:19500-19507. [PMID: 35479237 PMCID: PMC9033567 DOI: 10.1039/d1ra02581c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The characterization of new photochemical pathways is important to progress the understanding of emerging areas of light-triggered inorganic and organic chemistry. In this context, the development of platforms to perform routine characterization of photochemical reactions remains an important goal for photochemists. Here, we demonstrate a new instrument that can be used to characterise both solution-phase and gas-phase photochemical reactions through electrospray ionisation mass spectrometry (ESI-MS). The gas-phase photochemistry is studied by novel laser-interfaced mass spectrometry (LIMS), where the molecular species of interest is introduced to the gas-phase by ESI, mass-selected and then subjected to laser photodissociation in the ion-trap. On-line solution-phase photochemistry is initiated by LEDs prior to ESI-MS in the same instrument with ESI-MS again being used to monitor photoproducts. Two ruthenium metal carbonyls, [Ru(η5-C5H5)(PPh3)2CO][PF6] and [Ru(η5-C5H5)(dppe)CO][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) are studied using this methodology. We show that the gas-phase photofragmentation pathways observed for the ruthenium complexes via LIMS (i.e. loss of CO + PPh3 ligands from [Ru(η5-C5H5)(PPh3)2CO]+ and loss of just CO from [Ru(η5-C5H5)(dppe)CO]+) mirror the solution-phase photochemistry at 3.4 eV. The advantages of performing the gas-phase and solution-phase photochemical characterisations in a single instrument are discussed.
Collapse
Affiliation(s)
- Rosaria Cercola
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natalie G K Wong
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Chris Rhodes
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lorna Olijnyk
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Neetisha S Mistry
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lewis M Hall
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jacob A Berenbeim
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | | |
Collapse
|
4
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
5
|
Nyakuchena J, Ostresh S, Streater D, Pattengale B, Neu J, Fiankor C, Hu W, Kinigstein ED, Zhang J, Zhang X, Schmuttenmaer CA, Huang J. Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic Frameworks. J Am Chem Soc 2020; 142:21050-21058. [PMID: 33226217 DOI: 10.1021/jacs.0c09000] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conductive metal organic frameworks (MOFs) represent a promising class of porous crystalline materials that have demonstrated potential in photo-electronics and photocatalytic applications. However, the lack of fundamental understanding on charge transport (CT) mechanism as well as the correlation of CT mechanism with their structure hampered their further development. Herein, we report the direct evidence of CT mechanism in 2D Cu-THQ MOFs and the correlation of temporal and spatial behaviors of charge carriers with their photoconductivity by combining three advanced spectroscopic methods, including time resolved optical and X-ray absorption spectroscopy and terahertz spectroscopy. In addition to Cu-THQ, the CT in Cu/Zn-THQ after incorporating Zn2+ guest metal was also examined to uncover the contribution of through space pathway, as the presence of the redox inactive 3d10 Zn2+ is expected to perturb the long range in-plane CT. We show that the hot carriers in Cu-THQ generated after photoexcitation are highly mobile and undergo fast localization to a lower energy state (cool carriers) with electrons occupying Cu center and holes in ligands. The cool carriers, which have super long lifetime (>17 ns), are responsible for the long-term photoconductivity in Cu-THQ and transport through the O-Cu-O motif with negligible contribution from interlayer ligand π-π stacking, as incorporation of Zn2+ in Cu-THQ significantly reduced photoconductivity. These unprecedented results not only demonstrate the capability to experimentally probe CT mechanism but also provide important insight in the rational design of 2D MOFs for photoelectronic and photocatalytic applications.
Collapse
Affiliation(s)
- James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Sarah Ostresh
- Department of Chemistry and Yale Energy Science Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel Streater
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Brian Pattengale
- Department of Chemistry and Yale Energy Science Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jens Neu
- Department of Molecular Biophysics and Biochemistry and Yale Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, Unites States
| | - Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Eli Diego Kinigstein
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Charles A Schmuttenmaer
- Department of Chemistry and Yale Energy Science Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| |
Collapse
|
6
|
Biasin E, van Driel TB, Levi G, Laursen MG, Dohn AO, Moltke A, Vester P, Hansen FBK, Kjaer KS, Harlang T, Hartsock R, Christensen M, Gaffney KJ, Henriksen NE, Møller KB, Haldrup K, Nielsen MM. Anisotropy enhanced X-ray scattering from solvated transition metal complexes. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:306-315. [PMID: 29488907 DOI: 10.1107/s1600577517016964] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/24/2017] [Indexed: 05/23/2023]
Abstract
Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. It is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt-Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.
Collapse
Affiliation(s)
- Elisa Biasin
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Tim B van Driel
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Gianluca Levi
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Mads G Laursen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Asmus O Dohn
- Faculty of Physical Sciences, University of Iceland, Reykjavik, Iceland
| | - Asbjørn Moltke
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Peter Vester
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Frederik B K Hansen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Kasper S Kjaer
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Tobias Harlang
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Robert Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Morten Christensen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
van Driel TB, Kjær KS, Hartsock RW, Dohn AO, Harlang T, Chollet M, Christensen M, Gawelda W, Henriksen NE, Kim JG, Haldrup K, Kim KH, Ihee H, Kim J, Lemke H, Sun Z, Sundström V, Zhang W, Zhu D, Møller KB, Nielsen MM, Gaffney KJ. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst. Nat Commun 2016; 7:13678. [PMID: 27892472 PMCID: PMC5133712 DOI: 10.1038/ncomms13678] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir2(dimen)4]2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute–solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis. Interactions between reactive excited states of molecular photocatalysts and surrounding solvent can dictate reaction pathways, but are not readily accessible to conventional spectroscopic methods. Here the authors use diffuse X-ray scattering and theory to study the atomistic solvation dynamics of a photoexcited di-iridium complex in acetonitrile.
Collapse
Affiliation(s)
- Tim B van Driel
- Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.,LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kasper S Kjær
- Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.,PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA.,Chemical Physics Department, PO Box 124, Lund University, S-22100 Lund, Sweden
| | - Robert W Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA
| | - Asmus O Dohn
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tobias Harlang
- Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.,Chemical Physics Department, PO Box 124, Lund University, S-22100 Lund, Sweden
| | - Matthieu Chollet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Morten Christensen
- Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Wojciech Gawelda
- European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.,Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jong Goo Kim
- Department of Chemistry, KAIST, Daejeon 305-701, South Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| | - Kristoffer Haldrup
- Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kyung Hwan Kim
- Department of Chemistry, KAIST, Daejeon 305-701, South Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| | - Hyotcherl Ihee
- Department of Chemistry, KAIST, Daejeon 305-701, South Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 402-751, South Korea
| | - Henrik Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zheng Sun
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA
| | - Villy Sundström
- Chemical Physics Department, PO Box 124, Lund University, S-22100 Lund, Sweden
| | - Wenkai Zhang
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA
| | - Diling Zhu
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
8
|
Li R, Zhang M, Yan C, Yao Z, Zhang J, Wang P. Electron-acceptor-dependent light absorption, excited-state relaxation, and charge generation in triphenylamine dye-sensitized solar cells. CHEMSUSCHEM 2015; 8:97-104. [PMID: 25324188 DOI: 10.1002/cssc.201402806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 06/04/2023]
Abstract
By choosing a simple triphenylamine electron donor, we herein compare the influence of electron acceptors benzothiadiazole benzoic acid (BTBA) and cyanoacrylic acid (CA), on energy levels, light absorption, and dynamics of excited-state evolution and electron injection. DFT and time-dependent DFT calculations disclosed remarkable intramolecular conformational changes for the excited states of these two donor-acceptor dyes. Photoinduced dihedral angle variation occurs to the triphenylamine unit in the CA dye and backbone planarization happens to conjugated aromatic blocks in the BTBA dye. Femtosecond spectroscopic measurements suggested the crucial role of having a long excited-state lifetime in maintaining a high electron-injection yield because a reduced driving force for a low energy-gap dye can result in slower electron-injection dynamics.
Collapse
Affiliation(s)
- Renzhi Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 13002 (PR China)
| | | | | | | | | | | |
Collapse
|
9
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
|
11
|
Borfecchia E, Garino C, Salassa L, Ruiu T, Gianolio D, Zhang X, Attenkofer K, Chen LX, Gobetto R, Sadler PJ, Lamberti C. X-ray transient absorption structural characterization of the 3MLCT triplet excited state of cis-[Ru(bpy)2(py)2]2+. Dalton Trans 2013; 42:6564-71. [PMID: 23474490 DOI: 10.1039/c3dt32865a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The excited state dynamics and structure of the photochemically active complex cis-[Ru(bpy)2(py)2](2+) have been investigated using optical transient absorption (OTA) and X-ray transient absorption (XTA) spectroscopy, and density functional theory (DFT). Upon light-excitation in aqueous solution cis-[Ru(bpy)2(py)2](2+) undergoes ultrafast dissociation of one pyridine ligand to form cis-[Ru(bpy)2(py)(H2O)](2+). OTA measurements highlighted the presence of two major time components of 1700 ps and 130 ps through which the system decays to the ground-state and evolves towards the photoproduct. XTA data were acquired after 150 ps, 500 ps, and 3000 ps from laser excitation (λexc = 351 nm) and provided the transient structure of the (3)MLCT state corresponding to the longer time component in the OTA experiment. In excellent agreement with DFT, XTA shows that the (3)MLCT geometry is characterized by an elongation of the dissociating Ru-N(py) bond and a shortening of the trans Ru-N(bpy) bond with respect to the ground state. Conversely, calculations show that the (3)MC state has a highly distorted structure with Ru-N(py) bonds between 2.77-3.05 Å.
Collapse
Affiliation(s)
- Elisa Borfecchia
- Department of Chemistry, NIS Centre of Excellence, and INSTM Reference Centre, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chem Rev 2013; 113:1736-850. [DOI: 10.1021/cr2000898] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Elena Groppo
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Giovanni Agostini
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Jeroen A. van Bokhoven
- ETH Zurich, Institute for Chemical and Bioengineering, HCI E127 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source, Paul Scherrer Instituteaul Scherrer Institute, Villigen, Switzerland
| | - Carlo Lamberti
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|