1
|
Chen L, Zheng J, Feng J, Qian Q, Zhou Y. Reversible modulation of plasmonic chiral signals of achiral gold nanorods using a chiral supramolecular template. Chem Commun (Camb) 2019; 55:11378-11381. [PMID: 31478536 DOI: 10.1039/c9cc06050b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report here the fabrication of a multiple stimuli-responsive chiral plasmonic system based on the reversible self-assembly of phenylboronic acid-capped gold nanorods (PBA-Au NRs) guided by a supramolecular glycopeptide mimetic template. The plasmonic chiral signals of PBA-Au NRs can be reversibly switched on and off by temperature, light, pH and glucose concentration variations.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Yunlong Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| |
Collapse
|
2
|
Mohammadi M, Rezaei Mokarram R, Hamishehkar H. Glutathione decorated gold-magnetic nanoparticles: efficient and recyclable catalyst for biotechnological and pharmaceutical applications. J Microencapsul 2019; 35:559-569. [DOI: 10.1080/02652048.2018.1554011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maryam Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Gui S, Huang Y, Hu F, Jin Y, Zhang G, Zhang D, Zhao R. Bioinspired Peptide for Imaging Hg2+ Distribution in Living Cells and Zebrafish Based on Coordination-Mediated Supramolecular Assembling. Anal Chem 2018; 90:9708-9715. [DOI: 10.1021/acs.analchem.8b00059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shilang Gui
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Hu
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Jin X, Jiang J, Liu M. Reversible Plasmonic Circular Dichroism via Hybrid Supramolecular Gelation of Achiral Gold Nanorods. ACS NANO 2016; 10:11179-11186. [PMID: 28024330 DOI: 10.1021/acsnano.6b06233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The fabrication of chiroptical plasmonic nanomaterials such as chiral plasmonic gold nanorods (GNRs) has been attracting great interest. Generally, in order to realize the plasmonic circular dichroism (PCD) from achiral GNRs, it is necessary to partially replace the surface-coated cetyltrimethylammonium bromide with chiral molecules. Here, we present a supramolecular approach to generate and modulate the PCD of GNRs through the hybrid gelation of GNRs with an amphiphilic chiral dendron gelator. Upon gelation, the PCD could be produced and further regulated depending on the ratio of the dendrons to GNRs. It was revealed that the wrapping of the self-assembled nanofibers around the GNRs is crucial for generating the PCD. Furthermore, the hybrid gel underwent a thermotriggered gel-sol and sol-gel transformation, during which the PCD can disappear (solution) and reappear (gel), respectively, and such process can be repeated many times. In addition, the hybrid gel could also undergo shrinkage upon addition of a slight amount of Mg2+ ions, during which the PCD disappeared also. Thus, through the gel formation and subsequent metal ion- or temperature-triggered phase transition, PCD can be reversibly modulated. The results not only clarified the generation mechanism of PCD from the achiral GNRs without the chiral modification on the surface but also offered a simple and efficient way to modulate the PCD.
Collapse
Affiliation(s)
- Xue Jin
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jian Jiang
- National Center for Nanoscience and Technology, CAS Center for Excellence in Nanoscience , Beijing 100190, People's Republic of China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- National Center for Nanoscience and Technology, CAS Center for Excellence in Nanoscience , Beijing 100190, People's Republic of China
- A Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Bai C, Wang C. Molecular nanostructure and nanotechnology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20130263. [PMID: 24000369 PMCID: PMC3758168 DOI: 10.1098/rsta.2013.0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Chunli Bai
- Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chen Wang
- National Center for Nanoscience and Technology, Beijing, People's Republic of China
| |
Collapse
|