1
|
An ISFET Microarray Sensor System for Detecting the DNA Base Pairing. MICROMACHINES 2021; 12:mi12070731. [PMID: 34206209 PMCID: PMC8305849 DOI: 10.3390/mi12070731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023]
Abstract
Deoxyribonucleic acid (DNA) sequencing technology provides important data for the disclosure of genetic information and plays an important role in gene diagnosis and gene therapy. Conventional sequencing devices are expensive and require large and bulky optical structures and additional fluorescent labeling steps. Sequencing equipment based on a semiconductor chip has the advantages of fast sequencing speed, low cost and small size. The detection of DNA base pairing is the most important step in gene sequencing. In this study, a large-scale ion-sensitive field-effect transistor (ISFET) array chip with more than 13 million sensitive units is successfully designed for detecting the DNA base pairing. DNA base pairing is successfully detected by the sensor system, which includes the ISFET microarray chip, microfluidic system, and test platform. The chip achieves a high resolution of at least 0.5 mV, thus enabling the recognition of the change of 0.01 pH value. This complementary metal-oxide semiconductor (CMOS) compatible and cost-efficient sensor array chip, together with other specially designed components, can form a complete DNA sequencing system with potential application in the molecular biology fields.
Collapse
|
2
|
Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures. Biosens Bioelectron 2018; 126:510-517. [PMID: 30476882 DOI: 10.1016/j.bios.2018.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022]
Abstract
The reusability of capacitive field-effect electrolyte-insulator-semiconductor (EIS) sensors modified with a cationic weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) for the label-free electrical detection of single-stranded DNA (ssDNA), in-solution- and on-chip-hybridized double-stranded DNA (dsDNA) has been studied. It has been demonstrated that via simply regeneration of the gate surface of the EIS sensor by means of an electrostatic adsorption of a new PAH layer, the same biosensor can be reused for at least five DNA-detection measurements. Because of the reversal of the charge sign of the outermost layer after each surface modification with the cationic PAH or negatively charged DNA molecules, the EIS-biosensor signal exhibits a zigzag-like behavior. The amplitude of the signal changes has a tendency to decrease with increasing number of macromolecular layers. The direction of the EIS-signal shifts can serve as an indicator for a successful DNA-immobilization or -hybridization process. In addition, we observed that the EIS-signal changes induced by each surface-modification step (PAH adsorption, immobilization of ssDNA or dsDNA molecules and on-chip hybridization of complementary target cDNA) is decreased with increasing the ionic strength of the measurement solution, due to the more efficient macromolecular charge-screening by counter ions. The results of field-effect experiments were supported by fluorescence-intensity measurements of the PAH- or DNA-modified EIS surface using various fluorescence dyes.
Collapse
|
3
|
Ma S, Li X, Lee YK, Zhang A. Direct label-free protein detection in high ionic strength solution and human plasma using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Biosens Bioelectron 2018; 117:276-282. [PMID: 29909199 DOI: 10.1016/j.bios.2018.05.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
We report on direct label-free protein detection in high ionic strength solution and human plasma by a dual-gate nanoribbon-based ion-sensitive field-effect transistor (NR-ISFET) biosensor system with excellent sensitivity and specificity in both solution-gate (SG) and dual-gate (DG) modes. Compared with previously reported results, the NR-ISFET biosensor enables selective prostate specific antigen (PSA) detection based on antibody-antigen binding in broader detection range with lower LOD. For the first time, real-time specific detection of PSA of 10 pM to 1 μM in 100 mM phosphate buffer (PB) was demonstrated by conductance measurements using the polyethylene glycol (PEG)-modified NR-ISFET biosensors in DG mode with the back-gate bias (VBG) of 20 V. Due to larger maximum transconductance value resulting from the modulation of NR-ISFET channel by the back gate in DG mode, the detection range can be broadened with larger linear detection region (100 pM to 100 nM) and lower limit of detection (LOD, 10 pM) as compared to those in SG mode. Moreover, the influence of different back-gate bias from VBG = 5 V to VBG = 25 V on the biosensor performance has been investigated. Furthermore, direct PSA detection of 100 pM to 1 μM in human plasma was demonstrated by using the PEG-modified NR-ISFET in DG mode, enabling direct detection of protein in human blood for clinical applications since the LOD of 100 pM PSA can meet the clinical requirements.
Collapse
Affiliation(s)
- Shenhui Ma
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xin Li
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Guangdong Shunde Xi'an Jiaotong University Academy, Foshan, Guangdong 528300, China.
| | - Yi-Kuen Lee
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Anping Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
4
|
Hu C, Kalsi S, Zeimpekis I, Sun K, Ashburn P, Turner C, Sutton JM, Morgan H. Ultra-fast electronic detection of antimicrobial resistance genes using isothermal amplification and Thin Film Transistor sensors. Biosens Bioelectron 2017; 96:281-287. [DOI: 10.1016/j.bios.2017.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
|
5
|
Rani D, Pachauri V, Mueller A, Vu XT, Nguyen TC, Ingebrandt S. On the Use of Scalable NanoISFET Arrays of Silicon with Highly Reproducible Sensor Performance for Biosensor Applications. ACS OMEGA 2016; 1:84-92. [PMID: 30023473 PMCID: PMC6044623 DOI: 10.1021/acsomega.6b00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/31/2016] [Indexed: 05/22/2023]
Abstract
As a prerequisite to the development of real label-free bioassay applications, a high-throughput top-down nanofabrication process is carried out with a combination of nanoimprint lithography, anisotropic wet-etching, and photolithography methods realizing nanoISFET arrays that are then analyzed for identical sensor characteristics. Here, a newly designed array-based sensor chip exhibits 32 high aspect ratio silicon nanowires (SiNWs) laid out in parallel with 8 unit groups that are connected to a very highly doped, Π-shaped common source and individual drain contacts. Intricately designed contact lines exert equal feed-line resistances and capacitances to homogenize the sensor response as well as to minimize parasitic transport effects and to render easy integration of a fluidic layer on top. The scalable nanofabrication process as outlined in this article casts out a total of 2496 nanowires (NWs) on a 4 inch p-type silicon-on-insulator (SOI) wafer, yielding 78 sensor chips based on nanoISFET arrays. The sensor platform exhibiting high-performance transistor characteristics in buffer solutions is thoroughly characterized using state-of-the-art surface and electrical measurement techniques. Deploying a pH sensor in liquid buffers after high-quality gas-phase silanization, nanoISEFT arrays demonstrate typical pH sensor behavior with sensitivity as high as 43 ± 3 mV·pH-1 and a device-to-device variation of 7% at the wafer scale. Demonstration of a high-density sensor platform with uniform characteristics such as nanoISFET arrays of silicon (Si) in a routine and refined nanofabrication process may serve as an ideal solution deployable for real assay-based applications.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- E-mail:
| | - Achim Mueller
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | - Xuan Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| | | | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibruecken, Germany
- Ram
Group DE GmbH, Amerikastrasse
15, 66482 Zweibruecken, Germany
| |
Collapse
|
6
|
Hu Y, Georgiou P. A robust ISFET pH-measuring front-end for chemical reaction monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:177-185. [PMID: 24808415 DOI: 10.1109/tbcas.2014.2313512] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper presents a robust, low-power and compact ion-sensitive field-effect transistor (ISFET) sensing front-end for pH reaction monitoring using unmodified CMOS. Robustness is achieved by overcoming problems of DC offset due to trapped charge and transcoductance reduction due to capacitive division, which commonly exist with implementation of ISFETs in CMOS. Through direct feedback to the floating gate and a low-leakage switching scheme, all the unwanted factors are eliminated while the output is capable of tracking a pH reaction which occurs at the sensing surface. This is confirmed through measured results of multiple devices of different sensing areas, achieving a mean amplification of 1.28 over all fabricated devices and pH sensitivity of 42.1 mV/pH. The front-end is also capable of compensating for accumulated drift using the designed switching scheme by resetting the floating gate voltage. The circuit has been implemented in a commercially-available 0.35 μm CMOS technology achieving a combined chemical and electrical output RMS noise of 3.1 mV at a power consumption of 848.1 nW which is capable of detecting pH changes as small as 0.06 pH.
Collapse
|