1
|
Zhou R, Yao Y, Blum V, Ren X, Kanai Y. All-Electron BSE@GW Method with Numeric Atom-Centered Orbitals for Extended Periodic Systems. J Chem Theory Comput 2025; 21:291-306. [PMID: 39807537 DOI: 10.1021/acs.jctc.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Green's function theory has emerged as a powerful many-body approach not only in condensed matter physics but also in quantum chemistry in recent years. We have developed a new all-electron implementation of the BSE@GW formalism using numeric atom-centered orbital basis sets (Liu, C. J. Chem. Phys. 2020, 152, 044105). We present our recent developments in implementing this formalism for extended periodic systems. We discuss its numerical implementation and various convergence tests pertaining to numerical atom-centered orbitals, auxiliary basis sets for the resolution-of-identity formalism, and Brillouin zone sampling. Several proof-of-principle examples are presented to compare with other formalisms, illustrating the new all-electron BSE@GW method for extended periodic systems.
Collapse
Affiliation(s)
- Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xinguo Ren
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Ohad G, Hartstein M, Gould T, Neaton JB, Kronik L. Nonempirical Prediction of the Length-Dependent Ionization Potential in Molecular Chains. J Chem Theory Comput 2024; 20. [PMID: 39137361 PMCID: PMC11360138 DOI: 10.1021/acs.jctc.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
The ionization potential of molecular chains is well-known to be a tunable nanoscale property that exhibits clear quantum confinement effects. State-of-the-art methods can accurately predict the ionization potential in the small molecule limit and in the solid-state limit, but for intermediate, nanosized systems prediction of the evolution of the electronic structure between the two limits is more difficult. Recently, optimal tuning of range-separated hybrid functionals has emerged as a highly accurate method for predicting ionization potentials. This was first achieved for molecules using the ionization potential theorem (IPT) and more recently extended to solid-state systems, based on an ansatz that generalizes the IPT to the removal of charge from a localized Wannier function. Here, we study one-dimensional molecular chains of increasing size, from the monomer limit to the infinite polymer limit using this approach. By comparing our results with other localization-based methods and where available with experiment, we demonstrate that Wannier-localization-based optimal tuning is highly accurate in predicting ionization potentials for any chain length, including the nanoscale regime.
Collapse
Affiliation(s)
- Guy Ohad
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Michal Hartstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Tim Gould
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, Nathan QLD 4111, Australia
| | - Jeffrey B. Neaton
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at Berkeley, University of California, Berkeley, Berkeley, California 94720, United States
| | - Leeor Kronik
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| |
Collapse
|
3
|
Kuan KY, Yeh SH, Yang W, Hsu CP. Excited-State Charge Transfer Coupling from Quasiparticle Energy Density Functional Theory. J Phys Chem Lett 2024; 15:6126-6136. [PMID: 38830203 PMCID: PMC11181311 DOI: 10.1021/acs.jpclett.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
The recently developed Quasiparticle Energy (QE) scheme, based on a DFT calculation with one more (or less) electron, offers a good description of excitation energies, even with charge transfer characters. In this work, QE is further extended to calculate electron transfer (ET) couplings involving two excited states. We tested it with a donor-acceptor complex, consisting of a furan and a 1,1-dicyanoethylene (DCNE), in which two low lying charge transfer and local excitation states are involved. With generalized Mülliken-Hush and fragment charge-difference schemes, couplings from the QE approach generally agree well with those obtained from TDDFT, except that QE couplings exhibit better exponential distance dependence. Couplings from half-energy gaps with an external field are also calculated and reported. Our results show that the QE scheme is robust in calculating ET couplings with greatly reduced computational time.
Collapse
Affiliation(s)
- Kai-Yuan Kuan
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang
District, Taipei 11529, Taiwan
| | - Shu-Hao Yeh
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang
District, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Rd, Section 4, Da’an
District, Taipei City 10617, Taiwan
| | - Weitao Yang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chao-Ping Hsu
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang
District, Taipei 11529, Taiwan
- Division
of Physics, National Center for Theoretical
Sciences, 1 Roosevelt
Road, Section 4, Taipei City 10617, Taiwan
| |
Collapse
|
4
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
King DS, Truhlar DG, Gagliardi L. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2023; 19:8118-8128. [PMID: 37905518 DOI: 10.1021/acs.jctc.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The selection of an adequate set of active orbitals for modeling strongly correlated electronic states is difficult to automate because it is highly dependent on the states and molecule of interest. Although many approaches have shown some success, no single approach has worked well in all cases. In light of this, we present the "discrete variational selection" (DVS) approach to active space selection, in which one generates multiple trial wave functions from a diverse set of systematically constructed active spaces and then selects between these wave functions variationally. We apply this DVS approach to 207 vertical excitations of small-to-medium-sized organic and inorganic molecules (with 3 to 18 atoms) in the QUESTDB database by (i) constructing various sets of active space orbitals through diagonalization of parametrized operators and (ii) choosing the result with the lowest average energy among the states of interest. This approach proves ineffective when variationally selecting between wave functions using the density matrix renormalization group (DMRG) or complete active space self-consistent field (CASSCF) energy but is able to provide good results when variationally selecting between wave functions using the energy of the translated PBE (tPBE) functional from multiconfiguration pair-density functional theory (MC-PDFT). Applying this DVS-tPBE approach to selection among state-averaged DMRG wave functions, we obtain a mean unsigned error of only 0.17 eV using hybrid MC-PDFT. This result matches that of our previous benchmark without the need to filter out poor active spaces and with no further orbital optimization following active space selection of the SA-DMRG wave functions. Furthermore, we find that DVS-tPBE is able to robustly and effectively select between the new SA-DMRG wave functions and our previous SA-CASSCF results.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Group, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Hennefarth MR, King DS, Gagliardi L. Linearized Pair-Density Functional Theory for Vertical Excitation Energies. J Chem Theory Comput 2023; 19:7983-7988. [PMID: 37877741 DOI: 10.1021/acs.jctc.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multiconfiguration pair-density functional theory (MC-PDFT) is a computationally efficient method that computes the energies of electronic states in a state specific or state average framework via an on-top functional. However, MC-PDFT does not include state interaction among these states since the final energies do not come from the diagonalization of an effective model-space Hamiltonian. Recently, multistate extensions such as linearized PDFT (L-PDFT) have been developed to accurately model the potentials near conical intersections and avoided crossings. However, there has not been any systematic study evaluating their performance for predicting vertical excitations at the equilibrium geometry of a molecule, when the excited states are generally well separated. In this paper, we report the performance of L-PDFT on the extensive QUESTDB data set of vertical excitations using a database of automatically selected active spaces. We show that L-PDFT performs well on all these excitations and successfully reproduces the performance of MC-PDFT. These results further demonstrate the potential of L-PDFT, as its scaling is constant with the number of states included in the state-average manifold, whereas MC-PDFT scales linearly in this regard.
Collapse
Affiliation(s)
| | | | - Laura Gagliardi
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Tomar R, Bernasconi L, Fazzi D, Bredow T. Theoretical Study on the Optoelectronic Properties of Merocyanine-Dyes. J Phys Chem A 2023; 127:9661-9671. [PMID: 37962297 DOI: 10.1021/acs.jpca.3c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Merocyanines, as prototypes of highly polar π-conjugated molecules, have been intensively investigated for their self-assembly and optoelectronic properties, both experimentally and theoretically. However, an accurate description of their structural and electronic properties remains challenging for quantum-chemical methods. We assessed several theoretical approaches, TD-DFT, GW-BSE, STEOM-DLPNO-CCSD, and CASSCF/NEVPT2-FIC for their reliability in reproducing optoelectronic properties of a series of donor/acceptor (D/A) merocyanines, focusing on the first excitation energy. Additionally, we tested an all-electron perturbative method based on time-dependent coupled-perturbed density functional theory, denoted as TDCP-DFT. Particular focus was set on direct and indirect solvent effects, which affect excited-state energies by electrostatic interaction and molecular geometry. The molecular configuration space was sampled at the semiempirical tight-binding level. Our results corroborate previous investigations, showing that the S0 - S1 excitation energy strongly depends on the merocyanine molecular structure and the dielectric constant of the solvent. We found significant effects of the polar solution environment on the geometry of the merocyanines, which strongly affect the calculated excitation energies. Taking these effects into account, the best agreement between calculated and measured excitation energies was obtained with TDCP-DFT and GW-BSE. We also calculated excitation energies of molecular crystals at the TDCP-DFT level and compared the results to the corresponding monomers.
Collapse
Affiliation(s)
- Ritu Tomar
- Mulliken Center for Theoretical Chemistry, Clausius-Institut Für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, 312, Schenley Place, 4420 Bayard Street, Pittsburgh, Pennsylvania 15260, United States
| | - Daniele Fazzi
- Dipartimento di Chimica "Giacomo Ciamician", Universitá di Bologna, Via F. Selmi 2, Bologna 40126, Italy
- Department of Chemistry, University of Cologne, Greinstrasse 4-6, 50939, Köln, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Clausius-Institut Für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| |
Collapse
|
8
|
Mejía L, Yin J, Reichman DR, Baer R, Yang C, Rabani E. Stochastic Real-Time Second-Order Green's Function Theory for Neutral Excitations in Molecules and Nanostructures. J Chem Theory Comput 2023; 19:5563-5571. [PMID: 37539990 DOI: 10.1021/acs.jctc.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We present a real-time second-order Green's function (GF) method for computing excited states in molecules and nanostructures, with a computational scaling of O(Ne3), where Ne is the number of electrons. The cubic scaling is achieved by adopting the stochastic resolution of the identity to decouple the 4-index electron repulsion integrals. To improve the time propagation and the spectral resolution, we adopt the dynamic mode decomposition technique and assess the accuracy and efficiency of the combined approach for a chain of hydrogen dimer molecules of different lengths. We find that the stochastic implementation accurately reproduces the deterministic results for the electronic dynamics and excitation energies. Furthermore, we provide a detailed analysis of the statistical errors, bias, and long-time extrapolation. Overall, the approach offers an efficient route to investigate excited states in extended systems with open or closed boundary conditions.
Collapse
Affiliation(s)
- Leopoldo Mejía
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jia Yin
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Roi Baer
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chao Yang
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Bhat V, Callaway CP, Risko C. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chem Rev 2023. [PMID: 37141497 DOI: 10.1021/acs.chemrev.2c00704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations. We illustrate applications of these methods to a range of specific challenges in OSCs derived from π-conjugated polymers and molecules, including predicting charge-carrier transport, modeling chain conformations and bulk morphology, estimating thermomechanical properties, and describing phonons and thermal transport, to name a few. Through these examples, we demonstrate how advances in computational methods accelerate the deployment of OSCsin wide-ranging technologies, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thermoelectrics, organic batteries, and organic (bio)sensors. We conclude by providing an outlook for the future development of computational techniques to discover and assess the properties of high-performing OSCs with greater accuracy.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
10
|
Alkhalifah MA, Sheikh NS, Al-Faiyz YSS, Bayach I, Ludwig R, Ayub K. Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093447. [PMID: 37176328 PMCID: PMC10180138 DOI: 10.3390/ma16093447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Electronic and nonlinear optical properties of endohedral metallofullerenes are presented. The endohedral metallofullerenes contain transition metal encapsulated in inorganic fullerenes X12Y12 (X = B, Al & Y = N, P). The endohedral metallofullerenes (endo-TM@X12Y12) possess quite interesting geometric and electronic properties, which are the function of the nature of the atom and the size of fullerene. NBO charge and frontier molecular orbital analyses reveal that the transition metal encapsulated Al12N12 fullerenes (endo-TM@Al12N12) are true metalides when the transition metals are Ni, Cu and Zn. Endo-Cr@Al12N12 and endo-Co@Al12N12 are at the borderline between metalides and electrides with predominantly electride characteristics. The other members of the series are excess electron systems, which offer interesting electronic and nonlinear optical properties. The diversity of nature possessed by endo-TM@Al12N12 is not prevalent for other fullerenes. Endo-TM@Al12P12 are true metalides when the transition metals are (Cr-Zn). HOMO-LUMO gaps (EH-L) are reduced significantly for these endohedral metallofullerenes, with a maximum percent decrease in EH-L of up to 70%. Many complexes show odd-even oscillating behavior for EH-L and dipole moments. Odd electron species contain large dipole moments and small EH-L, whereas even electron systems have the opposite behavior. Despite the decrease in EH-L, these systems show high kinetic and thermodynamic stabilities. The encapsulation of transition metals is a highly exergonic process. These endo-TM@X12Y12 possess remarkable nonlinear optical response in which the first hyperpolarizability reaches up to 2.79 × 105 au for endo-V@Al12N12. This study helps in the comparative analysis of the potential nonlinear optical responses of electrides, metalides and other excess electron systems. In general, the potential nonlinear optical response of electrides is higher than metalides but lower than those of simple excess electron compounds. The higher non-linear optical response and interesting electronic characteristics of endo-TM@Al12N12 complexes may be promising contenders for potential NLO applications.
Collapse
Affiliation(s)
- Mohammed A Alkhalifah
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nadeem S Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Yasair S S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Imene Bayach
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ralf Ludwig
- University of Rostock, Institute of Chemistry, Physical and Theoretical Chemistry, Albert-Einstein-Straße 27, 18059 Rostock, Germany
- Department of Science and Technology of Life, Light and Matter, Faculty of Interdisciplinary Research, University of Rostock, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan
| |
Collapse
|
11
|
Kshirsagar AR, Poloni R. Assessing the Role of the Kohn-Sham Density in the Calculation of the Low-Lying Bethe-Salpeter Excitation Energies. J Phys Chem A 2023; 127:2618-2627. [PMID: 36913525 DOI: 10.1021/acs.jpca.2c07526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
We adopt the GW many-body perturbation theory in conjunction with the Bethe-Salpeter equation (BSE) to compute 57 excitation energies of a set of 37 molecules. By using the PBEh global hybrid functional and a self-consistent scheme on the eigenvalues in GW, we show a strong dependence of the BSE energy on the starting Kohn-Sham (KS) density functional. This arises from both the quasiparticle energies and the spatial localization of the frozen KS orbitals employed to compute the BSE. In order to address the arbitrariness in the mean field choice, we adopt an orbital-tuning scheme where the amount of Fock exchange, α, is tuned to impose that the KS HOMO matches the GW quasiparticle eigenvalue, thus fulfilling the ionization potential theorem in DFT. The performance of the proposed scheme yields excellent results and it is similar to M06-2X and PBEh with α = 75%, consistent with tuned values of α ranging between 60% and 80%.
Collapse
Affiliation(s)
| | - Roberta Poloni
- Université Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, 38000 Grenoble, France
| |
Collapse
|
12
|
King D, Hermes MR, Truhlar DG, Gagliardi L. Large-Scale Benchmarking of Multireference Vertical-Excitation Calculations via Automated Active-Space Selection. J Chem Theory Comput 2022; 18:6065-6076. [PMID: 36112354 PMCID: PMC9558375 DOI: 10.1021/acs.jctc.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/29/2022]
Abstract
We have calculated state-averaged complete-active-space self-consistent-field (SA-CASSCF), multiconfiguration pair-density functional theory (MC-PDFT), hybrid MC-PDFT (HMC-PDFT), and n-electron valence state second-order perturbation theory (NEVPT2) excitation energies with the approximate pair coefficient (APC) automated active-space selection scheme for the QUESTDB benchmark database of 542 vertical excitation energies. We eliminated poor active spaces (20-40% of calculations) by applying a threshold to the SA-CASSCF absolute error. With the remaining calculations, we find that NEVPT2 performance is significantly impacted by the size of the basis set the wave functions are converged in, regardless of the quality of their description, which is a problem absent in MC-PDFT. Additionally, we find that HMC-PDFT is a significant improvement over MC-PDFT with the translated PBE (tPBE) density functional and that it performs about as well as NEVPT2 and second-order coupled cluster on a set of 373 excitations in the QUESTDB database. We optimized the percentage of SA-CASSCF energy to include in HMC-PDFT when using the tPBE on-top functional, and we find the 25% value used in tPBE0 to be optimal. This work is by far the largest benchmarking of MC-PDFT and HMC-PDFT to date, and the data produced in this work are useful as a validation of HMC-PDFT and of the APC active-space selection scheme. We have made all the wave functions produced in this work (orbitals and CI vectors) available to the public and encourage the community to utilize this data as a tool in the development of further multireference model chemistries.
Collapse
Affiliation(s)
- Daniel
S. King
- Department
of Chemistry, University of Chicago, Chicago Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, University of Chicago, Chicago Illinois 60637, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputng
Institute, University of Minnesota, Minneapolis Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago Illinois 60637, United States
| |
Collapse
|
13
|
Dou W, Lee J, Zhu J, Mejía L, Reichman DR, Baer R, Rabani E. Time-Dependent Second-Order Green's Function Theory for Neutral Excitations. J Chem Theory Comput 2022; 18:5221-5232. [PMID: 36040050 DOI: 10.1021/acs.jctc.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We develop a time-dependent second-order Green's function theory (GF2) for calculating neutral excited states in molecules. The equation of motion for the lesser Green's function (GF) is derived within the adiabatic approximation to the Kadanoff-Baym (KB) equation, using the second-order Born approximation for the self-energy. In the linear response regime, we recast the time-dependent KB equation into a Bethe-Salpeter-like equation (GF2-BSE), with a kernel approximated by the second-order Coulomb self-energy. We then apply our GF2-BSE to a set of molecules and atoms and find that GF2-BSE is superior to configuration interaction with singles (CIS) and/or time-dependent Hartree-Fock (TDHF), particularly for charge-transfer excitations, and is comparable to CIS with perturbative doubles (CIS(D)) in most cases.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.,Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jian Zhu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Leopoldo Mejía
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Roi Baer
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Li J, Olevano V. Bethe-Salpeter equation insights into the photo-absorption function and exciton structure of chlorophyll a and b in light-harvesting complex II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112475. [PMID: 35644069 DOI: 10.1016/j.jphotobiol.2022.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The photo-absorption process and the excitation of chlorophyll (Chl) is the primary and essential step of photosynthesis in green plants. By solving the Bethe-Salpeter equation (BSE) on top of the GW approximation within ab initio many-body perturbation theory, we calculate the photo-absorption function and the excitons structure of Chl a and b in their in vivo conformations as measured by X-ray diffraction in the light-harvesting complex (LHC) II. BSE optical absorption spectra are in good agreement with the experiment and we discuss residual discrepancies. The experimental evidence of multiple Chla forms in vivo is explained by BSE. The Chla and Chlb BSE exciton wavefunctions present important charge-transfer differences on the Soret band. Q excitons are almost identical, apart from charge (both electron and hole) localization on the Chlb C7 aldheide formyl group, absent on the Chla methyl C7, that is exactly the group where the two chlorophylls differ.
Collapse
Affiliation(s)
- Jing Li
- Univ. Grenoble Alpes, Grenoble 38000, France; CEA, Leti, Minatec Campus, Grenoble 38054, France; CNRS, Institut Néel, Grenoble 38042, France; ETSF, Nano-Bio-Pharma Spectroscopy group, Grenoble 38000, France.
| | - Valerio Olevano
- Univ. Grenoble Alpes, Grenoble 38000, France; CNRS, Institut Néel, Grenoble 38042, France; ETSF, Nano-Bio-Pharma Spectroscopy group, Grenoble 38000, France.
| |
Collapse
|
15
|
Cho Y, Bintrim SJ, Berkelbach TC. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials. J Chem Theory Comput 2022; 18:3438-3446. [PMID: 35544591 DOI: 10.1021/acs.jctc.2c00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by Grimme's simplified Tamm-Dancoff density functional theory approach [Grimme, S. J. Chem. Phys. 2013, 138, 244104], we describe a simplified approach to excited-state calculations within the GW approximation to the self-energy and the Bethe-Salpeter equation (BSE), which we call sGW/sBSE. The primary simplification to the electron repulsion integrals yields the same structure as with tensor hypercontraction, such that our method has a storage requirement that grows quadratically with system size and computational timing that grows cubically with system size. The performance of sGW is tested on the ionization potential of the molecules in the GW100 test set, for which it differs from ab initio GW calculations by only 0.2 eV. The performance of sBSE (based on the sGW input) is tested on the excitation energies of molecules in Thiel's set, for which it differs from ab initio GW/BSE calculations by about 0.5 eV. As examples of the systems that can be routinely studied with sGW/sBSE, we calculate the band gap and excitation energy of hydrogen-passivated silicon nanocrystals with up to 2650 electrons in 4678 spatial orbitals and the absorption spectra of two large organic dye molecules with hundreds of atoms.
Collapse
Affiliation(s)
- Yeongsu Cho
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sylvia J Bintrim
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
16
|
Li J, Jin Y, Su NQ, Yang W. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies. J Chem Phys 2022; 156:154101. [PMID: 35459294 PMCID: PMC9033305 DOI: 10.1063/5.0087498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
We applied localized orbital scaling correction (LOSC) in Bethe-Salpeter equation (BSE) to predict accurate excitation energies for molecules. LOSC systematically eliminates the delocalization error in the density functional approximation and is capable of approximating quasiparticle (QP) energies with accuracy similar to or better than GW Green's function approach and with much less computational cost. The QP energies from LOSC, instead of commonly used G0W0 and evGW, are directly used in BSE. We show that the BSE/LOSC approach greatly outperforms the commonly used BSE/G0W0 approach for predicting excitations with different characters. For the calculations of Truhlar-Gagliardi test set containing valence, charge transfer, and Rydberg excitations, BSE/LOSC with the Tamm-Dancoff approximation provides a comparable accuracy to time-dependent density functional theory (TDDFT) and BSE/evGW. For the calculations of Stein CT test set and Rydberg excitations of atoms, BSE/LOSC considerably outperforms both BSE/G0W0 and TDDFT approaches with a reduced starting point dependence. BSE/LOSC is, thus, a promising and efficient approach to calculate excitation energies for molecular systems.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Ye Jin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Neil Qiang Su
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
17
|
Prokopiou G, Hartstein M, Govind N, Kronik L. Optimal Tuning Perspective of Range-Separated Double Hybrid Functionals. J Chem Theory Comput 2022; 18:2331-2340. [PMID: 35369687 PMCID: PMC9009176 DOI: 10.1021/acs.jctc.2c00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/29/2022]
Abstract
We study the optimal tuning of the free parameters in range-separated double hybrid functionals, based on enforcing the exact conditions of piecewise linearity and spin constancy. We find that introducing the range separation in both the exchange and the correlation terms allows for the minimization of both fractional charge and fractional spin errors for singlet atoms. The optimal set of parameters is system specific, underlining the importance of the tuning procedure. We test the performance of the resulting optimally tuned functionals for the dissociation curves of diatomic molecules. We find that they recover the correct dissociation curve for the one-electron system, H2+, and improve the dissociation curves of many-electron molecules such as H2 and Li2, but they also yield a nonphysical maximum and only converge to the correct dissociation limit at very large distances.
Collapse
Affiliation(s)
- Georgia Prokopiou
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Michal Hartstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Leeor Kronik
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| |
Collapse
|
18
|
Yao Y, Golze D, Rinke P, Blum V, Kanai Y. All-Electron BSE@ GW Method for K-Edge Core Electron Excitation Energies. J Chem Theory Comput 2022; 18:1569-1583. [PMID: 35138865 DOI: 10.1021/acs.jctc.1c01180] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present an accurate computational approach to calculate absolute K-edge core electron excitation energies as measured by X-ray absorption spectroscopy. Our approach employs an all-electron Bethe-Salpeter equation (BSE) formalism based on GW quasiparticle energies (BSE@GW) using numeric atom-centered orbitals (NAOs). The BSE@GW method has become an increasingly popular method for the computation of neutral valence excitation energies of molecules. However, it was so far not applied to molecular K-edge excitation energies. We discuss the influence of different numerical approximations on the BSE@GW calculation and employ in our final setup (i) exact numeric algorithms for the frequency integration of the GW self-energy, (ii) G0W0 and BSE starting points with ∼50% of exact exchange, (iii) the Tamm-Dancoff approximation and (iv) relativistic corrections. We study the basis set dependence and convergence with common Gaussian-type orbital and NAO basis sets. We identify the importance of additional spatially confined basis functions as well as of diffuse augmenting basis functions. The accuracy of our BSE@GW method is assessed for a benchmark set of small organic molecules, previously used for benchmarking the equation-of-motion coupled cluster method [Peng et al., J. Chem. Theory Comput., 2015, 11, 4146], as well as the medium-sized dibenzothiophene (DBT) molecule. Our BSE@GW results for absolute excitation energies are in excellent agreement with the experiment, with a mean average error of only 0.63 eV for the benchmark set and with errors <1 eV for the DBT molecule.
Collapse
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dorothea Golze
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Patrick Rinke
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | | | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
19
|
Bintrim SJ, Berkelbach TC. Full-frequency dynamical Bethe-Salpeter equation without frequency and a study of double excitations. J Chem Phys 2022; 156:044114. [PMID: 35105075 PMCID: PMC8807000 DOI: 10.1063/5.0074434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/31/2021] [Indexed: 01/30/2023] Open
Abstract
The Bethe-Salpeter equation (BSE) that results from the GW approximation to the self-energy is a frequency-dependent (nonlinear) eigenvalue problem due to the dynamically screened Coulomb interaction between electrons and holes. The computational time required for a numerically exact treatment of this frequency dependence is O(N6), where N is the system size. To avoid the common static screening approximation, we show that the full-frequency dynamical BSE can be exactly reformulated as a frequency-independent eigenvalue problem in an expanded space of single and double excitations. When combined with an iterative eigensolver and the density fitting approximation to the electron repulsion integrals, this reformulation yields a dynamical BSE algorithm whose computational time is O(N5), which we verify numerically. Furthermore, the reformulation provides direct access to excited states with dominant double excitation character, which are completely absent in the spectrum of the statically screened BSE. We study the 21Ag state of butadiene, hexatriene, and octatetraene and find that GW/BSE overestimates the excitation energy by about 1.5-2 eV and significantly underestimates the double excitation character.
Collapse
Affiliation(s)
- Sylvia J. Bintrim
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
20
|
Day PN, Pachter R, Nguyen KA. Calculated linear and nonlinear optical absorption spectra of phosphine-ligated gold clusters. Phys Chem Chem Phys 2022; 24:11234-11248. [DOI: 10.1039/d2cp01232d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although prediction of optical excitations of ligated gold clusters by time-dependent density functional theory (TDDFT) is relatively well-established, limitations still exist, for example in the choice of the exchange-correlation functional....
Collapse
|
21
|
LiF Nanoparticles Enhance Targeted Degradation of Organic Material under Low Dose X-ray Irradiation. RADIATION 2021. [DOI: 10.3390/radiation1020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The targeted irradiation of structures by X-rays has seen application in a variety of fields. Herein, the use of 5–10 nm LiF nanoparticles to locally enhance the degradation of an organic thin film, diindenoperylene, under hard X-ray irradiation, at relatively low ionizing radiation doses, is shown. X-ray reflectivity analysis indicated that the film thickness increased 12.04 Å in air and 11.34 Å in a helium atmosphere, under a radiation dose of ∼65 J/cm2 for 3 h illumination with a bi-layer structure that contained submonolayer coverage of thermally evaporated LiF. This was accompanied by significant modification of the surface topography for the organic film, which initially formed large flat islands. Accelerated aging experiments suggested that localized heating was not a major mechanism for the observed changes, suggesting a photochemical mechanism due to the formation of reactive species from LiF under irradiation. As LiF has a tendency to form active defects under radiation across the energy spectrum, this could could open a new direction to explore the efficacy of LiF or similar optically active materials that form electrically active defects under irradiation in various applications that could benefit from enhanced activity, such as radiography or targeted X-ray irradiation therapies.
Collapse
|
22
|
Rezaei M, Öğüt S. Photoelectron spectra of early 3d-transition metal dioxide molecular anions from GW calculations. J Chem Phys 2021; 154:094307. [PMID: 33685151 DOI: 10.1063/5.0042106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoelectron spectra of early 3d-transition metal dioxide anions, ScO2 -, TiO2 -, VO2 -, CrO2 -, and MnO2 -, are calculated using semilocal and hybrid density functional theory (DFT) and many-body perturbation theory within the GW approximation using one-shot perturbative and eigenvalue self-consistent formalisms. Different levels of theory are compared with each other and with available photoelectron spectra. We show that one-shot GW with a PBE0 starting point (G0W0@PBE0) consistently provides very good agreement for all experimentally measured binding energies (within 0.1 eV-0.2 eV or less). We attribute this to the success of PBE0 in mitigating self-interaction error and providing good quasiparticle wave functions, which renders a first-order perturbative GW correction effective. One-shot GW calculations with a Perdew-Burke-Ernzerhof (PBE) starting point do poorly in predicting electron removal energies by underbinding orbitals with typical errors near 1.5 eV. A higher exact exchange amount of 50% in the DFT starting point of one-shot GW does not provide very good agreement with experiment by overbinding orbitals with typical errors near 0.5 eV. While not as accurate as G0W0@PBE0, the G-only eigenvalue self-consistent GW scheme with W fixed to the PBE level provides a reasonably predictive level of theory (typical errors near 0.3 eV) to describe photoelectron spectra of these 3d-transition metal dioxide anions. Adding eigenvalue self-consistency also in W, on the other hand, worsens the agreement with experiment overall. Our findings on the performance of various GW methods are discussed in the context of our previous studies on other transition metal oxide molecular systems.
Collapse
Affiliation(s)
- Meisam Rezaei
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Serdar Öğüt
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
23
|
Prokopiou G, Autschbach J, Kronik L. Assessment of the Performance of Optimally Tuned Range‐Separated Hybrid Functionals for Nuclear Magnetic Shielding Calculations. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Georgia Prokopiou
- Department of Materials and InterfacesWeizmann Institute of ScienceRehovot 76100 Israel
| | - Jochen Autschbach
- Department of ChemistryState University of New York at BuffaloBuffalo NY 14260‐3000 USA
| | - Leeor Kronik
- Department of Materials and InterfacesWeizmann Institute of ScienceRehovot 76100 Israel
| |
Collapse
|
24
|
Kehry M, Franzke YJ, Holzer C, Klopper W. Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe–Salpeter equation. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1755064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Max Kehry
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yannick J. Franzke
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christof Holzer
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Wim Klopper
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
25
|
Kshirsagar AR, D’Avino G, Blase X, Li J, Poloni R. Accurate Prediction of the S1 Excitation Energy in Solvated Azobenzene Derivatives via Embedded Orbital-Tuned Bethe-Salpeter Calculations. J Chem Theory Comput 2020; 16:2021-2027. [DOI: 10.1021/acs.jctc.9b01257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Gabriele D’Avino
- Institut Néel-CNRS and Université Grenoble-Alpes, F-38042 Grenoble, France
| | - Xavier Blase
- Institut Néel-CNRS and Université Grenoble-Alpes, F-38042 Grenoble, France
| | - Jing Li
- Institut Néel-CNRS and Université Grenoble-Alpes, F-38042 Grenoble, France
- CEA, IRIG, MEM-L_Sim, Université Grenoble-Alpes, F-38000 Grenoble, France
| | - Roberta Poloni
- Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, F-38042 Grenoble, France
| |
Collapse
|
26
|
Cazzaniga M, Cargnoni F, Penconi M, Bossi A, Ceresoli D. Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes. J Chem Theory Comput 2020; 16:1188-1199. [PMID: 31860292 DOI: 10.1021/acs.jctc.9b00763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange-correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe-Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir(ppy)3 and performed GW-BSE simulations starting from different DFT exchange-correlation potentials.
Collapse
Affiliation(s)
- Marco Cazzaniga
- Consiglio Nazionale delle Ricerche , Istituto di Scienze e Tecnologie Chimiche (CNR-SCITEC) , 20133 Milano , Italy
| | - Fausto Cargnoni
- Consiglio Nazionale delle Ricerche , Istituto di Scienze e Tecnologie Chimiche (CNR-SCITEC) , 20133 Milano , Italy
| | - Marta Penconi
- Consiglio Nazionale delle Ricerche , Istituto di Scienze e Tecnologie Chimiche (CNR-SCITEC) , 20133 Milano , Italy
| | - Alberto Bossi
- Consiglio Nazionale delle Ricerche , Istituto di Scienze e Tecnologie Chimiche (CNR-SCITEC) , 20133 Milano , Italy
| | - Davide Ceresoli
- Consiglio Nazionale delle Ricerche , Istituto di Scienze e Tecnologie Chimiche (CNR-SCITEC) , 20133 Milano , Italy
| |
Collapse
|
27
|
Liu C, Kloppenburg J, Yao Y, Ren X, Appel H, Kanai Y, Blum V. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals. J Chem Phys 2020; 152:044105. [DOI: 10.1063/1.5123290] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chi Liu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jan Kloppenburg
- Institute of Condensed Matter and Nanoscience, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Yi Yao
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Xinguo Ren
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Heiko Appel
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
28
|
Kronik L, Kümmel S. Piecewise linearity, freedom from self-interaction, and a Coulomb asymptotic potential: three related yet inequivalent properties of the exact density functional. Phys Chem Chem Phys 2020; 22:16467-16481. [DOI: 10.1039/d0cp02564j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three properties of the exact energy functional of DFT are important in general and for spectroscopy in particular, but are not necessarily obeyed by approximate functionals. We explain what they are, why they are important, and how they are related yet inequivalent.
Collapse
Affiliation(s)
- Leeor Kronik
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Rehovoth 76100
- Israel
| | - Stephan Kümmel
- Theoretical Physics IV
- University of Bayreuth
- 95440 Bayreuth
- Germany
| |
Collapse
|
29
|
Kerru N, Gummidi L, Bhaskaruni SVHS, Maddila SN, Singh P, Jonnalagadda SB. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Sci Rep 2019; 9:19280. [PMID: 31848439 PMCID: PMC6917775 DOI: 10.1038/s41598-019-55793-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/30/2019] [Indexed: 01/09/2023] Open
Abstract
The crystal and molecular structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole 3 was reported, which was characterized by various spectroscopic techniques (FT-IR, NMR and HRMS) and single-crystal X-ray diffraction. The crystal structure 3 (C8H6ClN3S) crystallized in the orthorhombic space group Pna21 and the unit cell consisted of 8 asymmetric molecules. The unit cell parameters were a = 11.2027(2) Å, b = 7.6705(2) Å, c = 21.2166(6) Å, α = β = γ = 90°, V = 1823.15(8) Å3, Z = 8. In addition, the structural geometry (bond lengths, bond angles, and torsion angles), the electronic properties of mono and dimeric forms of compound 3 were calculated by using the density functional theory (DFT) method at B3LYP level 6-31+ G(d,p), 6-31++ G(d,p) and 6-311+ G(d,p) basis sets in ground state. A good correlation was found (R2 = 0.998) between the observed and theoretical vibrational frequencies. Frontier molecular orbitals (HOMO and LUMO) and Molecular Electrostatic Potential map of the compound was produced by using the optimized structures. The NBO analysis was suggested that the molecular system contains N-H…N hydrogen bonding, strong conjugative interactions and the molecule become more polarized owing to the movement of π-electron cloud from donor to acceptor. The calculated structural and geometrical results were in good rational agreement with the experimental X-ray crystal structure data of 1,3,4-thiadiazol-2-amine, 3. The compound 3 exhibited n→π* UV absorption peak of UV cutoff edge, and great magnitude of the first-order hyperpolarizability was observed. The obtained results suggest that compound 3 could have potential application as NLO material. Therefore, this study provides valuable insight experimentally and theoretically, for designing new chemical entities to meet the demands of specific applications.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Sandeep V H S Bhaskaruni
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Surya Narayana Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa
| | - Sreekantha B Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, P/Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
30
|
Charge-transfer excitons of metal intercalated pentacene dimers. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Golze D, Dvorak M, Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Front Chem 2019; 7:377. [PMID: 31355177 PMCID: PMC6633269 DOI: 10.3389/fchem.2019.00377] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
The GW approximation in electronic structure theory has become a widespread tool for predicting electronic excitations in chemical compounds and materials. In the realm of theoretical spectroscopy, the GW method provides access to charged excitations as measured in direct or inverse photoemission spectroscopy. The number of GW calculations in the past two decades has exploded with increased computing power and modern codes. The success of GW can be attributed to many factors: favorable scaling with respect to system size, a formal interpretation for charged excitation energies, the importance of dynamical screening in real systems, and its practical combination with other theories. In this review, we provide an overview of these formal and practical considerations. We expand, in detail, on the choices presented to the scientist performing GW calculations for the first time. We also give an introduction to the many-body theory behind GW, a review of modern applications like molecules and surfaces, and a perspective on methods which go beyond conventional GW calculations. This review addresses chemists, physicists and material scientists with an interest in theoretical spectroscopy. It is intended for newcomers to GW calculations but can also serve as an alternative perspective for experts and an up-to-date source of computational techniques.
Collapse
Affiliation(s)
- Dorothea Golze
- Department of Applied Physics, Aalto University, School of Science, Espoo, Finland
| | | | | |
Collapse
|
32
|
Friederich P, Fediai A, Kaiser S, Konrad M, Jung N, Wenzel W. Toward Design of Novel Materials for Organic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808256. [PMID: 31012166 DOI: 10.1002/adma.201808256] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Materials for organic electronics are presently used in prominent applications, such as displays in mobile devices, while being intensely researched for other purposes, such as organic photovoltaics, large-area devices, and thin-film transistors. Many of the challenges to improve and optimize these applications are material related and there is a nearly infinite chemical space that needs to be explored to identify the most suitable material candidates. Established experimental approaches struggle with the size and complexity of this chemical space. Herein, the development of simulation methods is addressed, with a particular emphasis on predictive multiscale protocols, to complement experimental research in the identification of novel materials and illustrate the potential of these methods with a few prominent recent applications. Finally, the potential of machine learning and methods based on artificial intelligence is discussed to further accelerate the search for new materials.
Collapse
Affiliation(s)
- Pascal Friederich
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Ontario, Canada
| | - Artem Fediai
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Simon Kaiser
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Manuel Konrad
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
33
|
Holzer C, Klopper W. Ionized, electron-attached, and excited states of molecular systems with spin–orbit coupling: Two-component GW and Bethe–Salpeter implementations. J Chem Phys 2019; 150:204116. [DOI: 10.1063/1.5094244] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P. O. Box 6980, D-76049 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P. O. Box 6980, D-76049 Karlsruhe, Germany
- Centre for Advanced Study (CAS) at The Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
| |
Collapse
|
34
|
Jin Y, Yang W. Excitation Energies from the Single-Particle Green's Function with the GW Approximation. J Phys Chem A 2019; 123:3199-3204. [PMID: 30920830 DOI: 10.1021/acs.jpca.9b02379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quasi-particle energies are important in predicting molecular ionization energies and bulk band structures. The state-of-the-art method for quasi-particle energy calculations, particularly for bulk systems, is the GW approximation. For excited state calculations, one needs to go beyond the GW approximation. The Bethe-Salpeter equation (BSE) is the commonly used approach for bulk-system excited state calculations beyond the GW approximation, which is accurate but computationally cumbersome. In this Article, we develop a new method to extract excitation energies directly from the quasi-particle energies based on the GW approximation. Starting from the ( N - 1)-electron system, we are able to calculate molecular excitation energies with orbital energies at the GW level for HOMO excitations. Our calculations demonstrate that this method can accurately capture low-lying local excitations as well as charge transfer excitations in many molecular systems. Our method is shown to outperform the time-dependent density functional theory (TDDFT) and are comparable with higher level excited state calculations, including the equation-of-motion couple cluster (EOM-CC) theory and the BSE, but with less computational effort. This new approach provides an efficient alternative to the BSE method for accurate excited state calculations.
Collapse
Affiliation(s)
- Ye Jin
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Weitao Yang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States.,Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China
| |
Collapse
|
35
|
San-Fabián E, Louis E, Díaz-García MA, Chiappe G, Vergés JA. Transport and Optical Gaps in Amorphous Organic Molecular Materials. Molecules 2019; 24:E609. [PMID: 30744125 PMCID: PMC6384593 DOI: 10.3390/molecules24030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
The standard procedure to identify the hole- or electron-acceptor character of amorphous organic materials used in OLEDs is to look at the values of a pair of basic parameters, namely, the ionization potential (IP) and the electron affinity (EA). Recently, using published experimental data, the present authors showed that only IP matters, i.e., materials with IP > 5.7 (<5.7) showing electron (hole) acceptor character. Only three materials fail to obey this rule. This work reports ab initio calculations of IP and EA of those materials plus two materials that behave according to that rule, following a route which describes the organic material by means of a single molecule embedded in a polarizable continuum medium (PCM) characterized by a dielectric constant ε . PCM allows to approximately describe the extended character of the system. This "compound" system was treated within density functional theory (DFT) using several combinations of the functional/basis set. In the preset work ε was derived by assuming Koopmans' theorem to hold. Optimal ε values are in the range 4.4⁻5.0, close to what is expected for this material family. It was assumed that the optical gap corresponds to the excited state with a large oscillator strength among those with the lowest energies, calculated with time-dependent DFT. Calculated exciton energies were in the range 0.76⁻1.06 eV, and optical gaps varied from 3.37 up to 4.50 eV. The results are compared with experimental data.
Collapse
Affiliation(s)
- Emilio San-Fabián
- Departamento de Química Física, Universidad de Alicante, 03080 Alicante, Spain.
| | - Enrique Louis
- Departamento de Física Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - María A Díaz-García
- Departamento de Física Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - Guillermo Chiappe
- Departamento de Física Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - José A Vergés
- Departamento de Teoría y Simulación de Materiales, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain;.
| |
Collapse
|
36
|
Wehner J, Brombacher L, Brown J, Junghans C, Çaylak O, Khalak Y, Madhikar P, Tirimbò G, Baumeier B. Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP. J Chem Theory Comput 2018; 14:6253-6268. [PMID: 30404449 PMCID: PMC6293448 DOI: 10.1021/acs.jctc.8b00617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many-body Green's functions theory within the GW approximation and the Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP software, aiming at the calculation of electronically excited states in complex molecular environments. Based on Gaussian-type atomic orbitals and making use of resolution of identity techniques, the code is designed specifically for nonperiodic systems. Application to a small molecule reference set successfully validates the methodology and its implementation for a variety of excitation types covering an energy range from 2 to 8 eV in single molecules. Further, embedding each GW-BSE calculation into an atomistically resolved surrounding, typically obtained from Molecular Dynamics, accounts for effects originating from local fields and polarization. Using aqueous DNA as a prototypical system, different levels of electrostatic coupling between the regions in this GW-BSE/MM setup are demonstrated. Particular attention is paid to charge-transfer (CT) excitations in adenine base pairs. It is found that their energy is extremely sensitive to the specific environment and to polarization effects. The calculated redshift of the CT excitation energy compared to a nucelobase dimer treated in vacuum is of the order of 1 eV, which matches expectations from experimental data. Predicted lowest CT energies are below that of a single nucleobase excitation, indicating the possibility of an initial (fast) decay of such an UV excited state into a binucleobase CT exciton. The results show that VOTCA-XTP's GW-BSE/MM is a powerful tool to study a wide range of types of electronic excitations in complex molecular environments.
Collapse
Affiliation(s)
- Jens Wehner
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany.,Department of Mathematics and Computer Science & Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands
| | - Lothar Brombacher
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Joshua Brown
- Department of Electrical Computer and Energy Engineering , University of Colorado Boulder , 425 UCB, Boulder , Colorado 80309 , United States.,Renewable and Sustainable Energy Institute , University of Colorado Boulder , 4001 Discovery Drive , Boulder , Colorado 80303 , United States
| | - Christoph Junghans
- Computer, Computational, and Statistical Sciences Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Onur Çaylak
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands
| | - Yuriy Khalak
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands
| | - Pranav Madhikar
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands
| | - Gianluca Tirimbò
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands
| | - Björn Baumeier
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven , The Netherlands
| |
Collapse
|
37
|
Bhandari S, Cheung MS, Geva E, Kronik L, Dunietz BD. Fundamental Gaps of Condensed-Phase Organic Semiconductors from Single-Molecule Calculations using Polarization-Consistent Optimally Tuned Screened Range-Separated Hybrid Functionals. J Chem Theory Comput 2018; 14:6287-6294. [DOI: 10.1021/acs.jctc.8b00876] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Margaret S. Cheung
- Department of Physics, University of Houston, Houston, Texas 77204, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
38
|
Ziaei V, Bredow T. Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:395501. [PMID: 30124435 DOI: 10.1088/1361-648x/aadb75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We recently proposed a screening mixing many-body ansatz (Ziaei and Bredow 2017 Phys. Rev. B 96 195115) to decrease the typical overestimation of the Hartree-Fock based GW/Bethe-Salpeter equation (BSE) singlet-singlet excitation energies in molecular systems. Now we have evaluated the accuracy of the proposed scheme for triplet states of a set of 20 organic molecules known as the Thiel set. We show that by mixing different screenings into GW and BSE calculated within random phase approximation (in order to ensure best gap and an optimal exciton binding energy), the total mean absolute error of 0.59 eV in the standard Hartree-Fock based eigenvalue GW/BSE approach is reduced to 0.26 eV for 63 triplet states. We further demonstrate that the quasi-particle self-consistent GW/BSE approach in which orbitals and energies are updated in the Green's function and the dynamically screened interaction mostly and considerably underestimates the excitation energies as shown for a few molecules.
Collapse
Affiliation(s)
- Vafa Ziaei
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
39
|
Kronik L, Kümmel S. Dielectric Screening Meets Optimally Tuned Density Functionals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706560. [PMID: 29665112 DOI: 10.1002/adma.201706560] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/19/2017] [Indexed: 06/08/2023]
Abstract
A short overview of recent attempts at merging two independently developed methods is presented. These are the optimal tuning of a range-separated hybrid (OT-RSH) functional, developed to provide an accurate first-principles description of the electronic structure and optical properties of gas-phase molecules, and the polarizable continuum model (PCM), developed to provide an approximate but computationally tractable description of a solvent in terms of an effective dielectric medium. After a brief overview of the OT-RSH approach, its combination with the PCM as a potentially accurate yet low-cost approach to the study of molecular assemblies and solids, particularly in the context of photocatalysis and photovoltaics, is discussed. First, solvated molecules are considered, with an emphasis on the challenge of balancing eigenvalue and total energy trends. Then, it is shown that the same merging of methods can also be used to study the electronic and optical properties of molecular solids, with a similar discussion of the pros and cons. Tuning of the effective scalar dielectric constant as one recent approach that mitigates some of the difficulties in merging the two approaches is considered.
Collapse
Affiliation(s)
- Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - Stephan Kümmel
- Theoretical Physics IV, Universität Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
40
|
Holzer C, Klopper W. Communication: A hybrid Bethe–Salpeter/time-dependent density-functional-theory approach for excitation energies. J Chem Phys 2018; 149:101101. [DOI: 10.1063/1.5051028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christof Holzer
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry, Theoretical Chemistry Group, KIT Campus South, P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Wim Klopper
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry, Theoretical Chemistry Group, KIT Campus South, P.O. Box 6980, D-76049 Karlsruhe, Germany
| |
Collapse
|
41
|
Shi B, Weissman S, Bruneval F, Kronik L, Öğüt S. Photoelectron spectra of copper oxide cluster anions from first principles methods. J Chem Phys 2018; 149:064306. [PMID: 30111139 DOI: 10.1063/1.5038744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results and analyses for the photoelectron spectra of small copper oxide cluster anions (CuO-, Cu O2- , Cu O3- , and Cu2O-). The spectra are computed using various techniques, including density functional theory (DFT) with semi-local, global hybrid, and optimally tuned range-separated hybrid functionals, as well as many-body perturbation theory within the GW approximation based on various DFT starting points. The results are compared with each other and with the available experimental data. We conclude that as in many metal-organic systems, self-interaction errors are a major issue that is mitigated by hybrid functionals. However, these need to be balanced against a strong role of non-dynamical correlation-especially in smaller, more symmetric systems-where errors are alleviated by semi-local functionals. The relative importance of the two phenomena, including practical ways of balancing the two constraints, is discussed in detail.
Collapse
Affiliation(s)
- Bin Shi
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Shira Weissman
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Fabien Bruneval
- DEN, Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91128 Gif-sur-Yvette, France
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Serdar Öğüt
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
42
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
43
|
Beltrán-Leiva MJ, Páez-Hernández D, Arratia-Pérez R. Theoretical Determination of Energy Transfer Processes and Influence of Symmetry in Lanthanide(III) Complexes: Methodological Considerations. Inorg Chem 2018; 57:5120-5132. [DOI: 10.1021/acs.inorgchem.8b00159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- María J. Beltrán-Leiva
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Center of Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Center of Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| |
Collapse
|
44
|
Sharifzadeh S. Many-body perturbation theory for understanding optical excitations in organic molecules and solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:153002. [PMID: 29460855 DOI: 10.1088/1361-648x/aab0d1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Semiconductors composed of organic molecules are promising as components for flexible and inexpensive optoelectronic devices, with many recent studies aimed at understanding their electronic and optical properties. In particular, computational modeling of these complex materials has provided new understanding of the underlying properties which give rise to their excited-state phenomena. This article provides an overview of recent many-body perturbation theory (MBPT) studies of optical excitations within organic molecules and solids. We discuss the accuracy of MBPT within the GW/BSE approach in predicting excitation energies and absorption spectra, and assess the impact of two commonly used approximations, the DFT starting point and the Tamm-Dancoff approximation. Moreover, we summarize studies that elucidate the role of solid-state structure on the nature of excitons in organic crystals. These studies show that a rich physical understanding of organic materials can be obtained from GW/BSE.
Collapse
Affiliation(s)
- Sahar Sharifzadeh
- Division of Materials Science and Engineering, Department of Electrical and Computer Engineering, Department of Physics, Boston University, Boston, MA, United States of America
| |
Collapse
|
45
|
Prokopiou G, Kronik L. Spin-State Energetics of Fe Complexes from an Optimally Tuned Range-Separated Hybrid Functional. Chemistry 2017; 24:5173-5182. [DOI: 10.1002/chem.201704014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/05/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Georgia Prokopiou
- Department of Materials and Interfaces; Weizmann Institute of Science; Rehovoth 76100 Israel
| | - Leeor Kronik
- Department of Materials and Interfaces; Weizmann Institute of Science; Rehovoth 76100 Israel
| |
Collapse
|
46
|
Holzer C, Klopper W. Communication: Symmetry-adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe–Salpeter equation. J Chem Phys 2017; 147:181101. [DOI: 10.1063/1.5007929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christof Holzer
- Institute of Physical Chemistry, Theoretical Chemistry Group, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Theoretical Chemistry Group, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, D-76049 Karlsruhe, Germany
- Centre for Advanced Study (CAS) at The Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
| |
Collapse
|
47
|
Brumboiu IE, Prokopiou G, Kronik L, Brena B. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional. J Chem Phys 2017; 147:044301. [DOI: 10.1063/1.4993623] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Iulia Emilia Brumboiu
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Georgia Prokopiou
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Barbara Brena
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
48
|
Tamblyn I. The electronic structure of nanoscale interfaces. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1313417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- I. Tamblyn
- National Research Council of Canada, Ottawa, Canada
- Department of Physics, University of Ontario Institute of Technology, Oshawa, Canada
| |
Collapse
|
49
|
Wehner J, Baumeier B. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green's Functions Theory. J Chem Theory Comput 2017; 13:1584-1594. [PMID: 28234472 PMCID: PMC5390308 DOI: 10.1021/acs.jctc.6b00935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general approach to determine orientation and distance-dependent effective intermolecular exciton transfer integrals from many-body Green's functions theory is presented. On the basis of the GW approximation and the Bethe-Salpeter equation (BSE), a projection technique is employed to obtain the excitonic coupling by forming the expectation value of a supramolecular BSE Hamiltonian with electron-hole wave functions for excitations localized on two separated chromophores. Within this approach, accounting for the effects of coupling mediated by intermolecular charge transfer (CT) excitations is possible via perturbation theory or a reduction technique. Application to model configurations of pyrene dimers shows an accurate description of short-range exchange and long-range Coulomb interactions for the coupling of singlet and triplet excitons. Computational parameters, such as the choice of the exchange-correlation functional in the density-functional theory (DFT) calculations that underly the GW-BSE steps and the convergence with the number of included CT excitations, are scrutinized. Finally, an optimal strategy is derived for simulations of full large-scale morphologies by benchmarking various approximations using pairs of dicyanovinyl end-capped oligothiophenes (DCV5T), which are used as donor material in state-of-the-art organic solar cells.
Collapse
Affiliation(s)
- Jens Wehner
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany.,Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Björn Baumeier
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
50
|
Marom N. Accurate description of the electronic structure of organic semiconductors by GW methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:103003. [PMID: 28145283 DOI: 10.1088/1361-648x/29/10/103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electronic properties associated with charged excitations, such as the ionization potential (IP), the electron affinity (EA), and the energy level alignment at interfaces, are critical parameters for the performance of organic electronic devices. To computationally design organic semiconductors and functional interfaces with tailored properties for target applications it is necessary to accurately predict these properties from first principles. Many-body perturbation theory is often used for this purpose within the GW approximation, where G is the one particle Green's function and W is the dynamically screened Coulomb interaction. Here, the formalism of GW methods at different levels of self-consistency is briefly introduced and some recent applications to organic semiconductors and interfaces are reviewed.
Collapse
Affiliation(s)
- Noa Marom
- Department of Materials Science and Engineering, Department of Chemistry, and Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|