1
|
Abstract
In the last few decades, solar activity has been diminishing, and so space weather studies need to be revisited with more attention. The physical processes involved in dealing with various space weather parameters have presented a challenge to the scientific community, with a threat of having a serious impact on modern society and humankind. In the present paper, we have reviewed various aspects of space weather and its present understanding. The Sun and the Earth are the two major elements of space weather, so the solar and the terrestrial perspectives are discussed in detail. A variety of space weather effects and their societal as well as anthropogenic aspects are discussed. The impact of space weather on the terrestrial climate is discussed briefly. A few tools (models) to explain the dynamical space environment and its effects, incorporating real-time data for forecasting space weather, are also summarized. The physical relation of the Earth’s changing climate with various long-term changes in the space environment have provided clues to the short-term/long-term changes. A summary and some unanswered questions are presented in the final section.
Collapse
|
2
|
Li JH, Yang F, Zhou XZ, Zong QG, Artemyev AV, Rankin R, Shi Q, Yao S, Liu H, He J, Pu Z, Xiao C, Liu J, Pollock C, Le G, Burch JL. Self-consistent kinetic model of nested electron- and ion-scale magnetic cavities in space plasmas. Nat Commun 2020; 11:5616. [PMID: 33154395 PMCID: PMC7644639 DOI: 10.1038/s41467-020-19442-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/15/2020] [Indexed: 12/05/2022] Open
Abstract
NASA’s Magnetospheric Multi-Scale (MMS) mission is designed to explore the proton- and electron-gyroscale kinetics of plasma turbulence where the bulk of particle acceleration and heating takes place. Understanding the nature of cross-scale structures ubiquitous as magnetic cavities is important to assess the energy partition, cascade and conversion in the plasma universe. Here, we present theoretical insight into magnetic cavities by deriving a self-consistent, kinetic theory of these coherent structures. By taking advantage of the multipoint measurements from the MMS constellation, we demonstrate that our kinetic model can utilize magnetic cavity observations by one MMS spacecraft to predict measurements from a second/third spacecraft. The methodology of “observe and predict” validates the theory we have derived, and confirms that nested magnetic cavities are self-organized plasma structures supported by trapped proton and electron populations in analogous to the classical theta-pinches in laboratory plasmas. Magnetic cavities play important roles in the energy cascade, conversion and dissipation in turbulent plasmas. Here, the authors show a theoretical insight into magnetic cavities by deriving a self-consistent, kinetic theory of these coherent structures.
Collapse
Affiliation(s)
- Jing-Huan Li
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Fan Yang
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Xu-Zhi Zhou
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
| | - Qiu-Gang Zong
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
| | - Anton V Artemyev
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, 90095, USA.,Space Research Institute, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Robert Rankin
- Department of Physics, University of Alberta, Edmonton, AB, T6G2G7, Canada
| | - Quanqi Shi
- Institute of Space Sciences, Shandong University, Weihai, 264209, China
| | - Shutao Yao
- Institute of Space Sciences, Shandong University, Weihai, 264209, China
| | - Han Liu
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Jiansen He
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Zuyin Pu
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Chijie Xiao
- School of Physics, Peking University, Beijing, 100871, China
| | - Ji Liu
- National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Guan Le
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - James L Burch
- Southwest Research Institute, San Antonio, TX, 78238, USA
| |
Collapse
|
3
|
Viall NM, Borovsky JE. Nine Outstanding Questions of Solar Wind Physics. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2020; 125:e2018JA026005. [PMID: 32728511 PMCID: PMC7380306 DOI: 10.1029/2018ja026005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
In situ measurements of the solar wind have been available for almost 60 years, and in that time plasma physics simulation capabilities have commenced and ground-based solar observations have expanded into space-based solar observations. These observations and simulations have yielded an increasingly improved knowledge of fundamental physics and have delivered a remarkable understanding of the solar wind and its complexity. Yet there are longstanding major unsolved questions. Synthesizing inputs from the solar wind research community, nine outstanding questions of solar wind physics are developed and discussed in this commentary. These involve questions about the formation of the solar wind, about the inherent properties of the solar wind (and what the properties say about its formation), and about the evolution of the solar wind. The questions focus on (1) origin locations on the Sun, (2) plasma release, (3) acceleration, (4) heavy-ion abundances and charge states, (5) magnetic structure, (6) Alfven waves, (7) turbulence, (8) distribution-function evolution, and (9) energetic-particle transport. On these nine questions we offer suggestions for future progress, forward looking on what is likely to be accomplished in near future with data from Parker Solar Probe, from Solar Orbiter, from the Daniel K. Inouye Solar Telescope (DKIST), and from Polarimeter to Unify the Corona and Heliosphere (PUNCH). Calls are made for improved measurements, for higher-resolution simulations, and for advances in plasma physics theory.
Collapse
|
4
|
Verscharen D, Klein KG, Maruca BA. The multi-scale nature of the solar wind. LIVING REVIEWS IN SOLAR PHYSICS 2019; 16:5. [PMID: 31929769 PMCID: PMC6934245 DOI: 10.1007/s41116-019-0021-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 11/09/2019] [Indexed: 05/29/2023]
Abstract
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
Collapse
Affiliation(s)
- Daniel Verscharen
- Mullard Space Science Laboratory, University College London, Dorking, RH5 6NT UK
- Space Science Center, University of New Hampshire, Durham, NH 03824 USA
| | - Kristopher G. Klein
- Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719 USA
| | - Bennett A. Maruca
- Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
5
|
Grošelj D, Mallet A, Loureiro NF, Jenko F. Fully Kinetic Simulation of 3D Kinetic Alfvén Turbulence. PHYSICAL REVIEW LETTERS 2018; 120:105101. [PMID: 29570310 DOI: 10.1103/physrevlett.120.105101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Indexed: 06/08/2023]
Abstract
We present results from a three-dimensional particle-in-cell simulation of plasma turbulence, resembling the plasma conditions found at kinetic scales of the solar wind. The spectral properties of the turbulence in the subion range are consistent with theoretical expectations for kinetic Alfvén waves. Furthermore, we calculate the local anisotropy, defined by the relation k_{∥}(k_{⊥}), where k_{∥} is a characteristic wave number along the local mean magnetic field at perpendicular scale l_{⊥}∼1/k_{⊥}. The subion range anisotropy is scale dependent with k_{∥}<k_{⊥} and the ratio of linear to nonlinear time scales is of order unity, suggesting that the kinetic cascade is close to a state of critical balance. Our results compare favorably against a number of in situ solar wind observations and demonstrate-from first principles-the feasibility of plasma turbulence models based on a critically balanced cascade of kinetic Alfvén waves.
Collapse
Affiliation(s)
- Daniel Grošelj
- Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
| | - Alfred Mallet
- Space Science Center, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Nuno F Loureiro
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Frank Jenko
- Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
| |
Collapse
|
6
|
Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4357/aa93e5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Howes GG. A prospectus on kinetic heliophysics. PHYSICS OF PLASMAS 2017; 24:055907. [PMID: 29104421 PMCID: PMC5648573 DOI: 10.1063/1.4983993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/01/2017] [Indexed: 05/29/2023]
Abstract
Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future.
Collapse
Affiliation(s)
- Gregory G Howes
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
8
|
A Model for Dissipation of Solar Wind Magnetic Turbulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4357/835/2/133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Navarro AB, Teaca B, Told D, Groselj D, Crandall P, Jenko F. Structure of Plasma Heating in Gyrokinetic Alfvénic Turbulence. PHYSICAL REVIEW LETTERS 2016; 117:245101. [PMID: 28009188 DOI: 10.1103/physrevlett.117.245101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 06/06/2023]
Abstract
We analyze plasma heating in weakly collisional kinetic Alfvén wave turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e., J·(E+v_{e}×B), as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.
Collapse
Affiliation(s)
- Alejandro Bañón Navarro
- Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, California 90095-1547, USA
| | - Bogdan Teaca
- Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, United Kingdom
| | - Daniel Told
- Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, California 90095-1547, USA
| | - Daniel Groselj
- Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, California 90095-1547, USA
- Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
| | - Paul Crandall
- Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, California 90095-1547, USA
| | - Frank Jenko
- Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, California 90095-1547, USA
| |
Collapse
|
10
|
Matthaeus WH, Wan M, Servidio S, Greco A, Osman KT, Oughton S, Dmitruk P. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140154. [PMID: 25848085 PMCID: PMC4394684 DOI: 10.1098/rsta.2014.0154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 05/29/2023]
Abstract
An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.
Collapse
Affiliation(s)
- W H Matthaeus
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA Dipartimento di Fisica, Università della Calabria, Arcavacata, Rende, Italy Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze, Italy
| | - Minping Wan
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - S Servidio
- Dipartimento di Fisica, Università della Calabria, Arcavacata, Rende, Italy
| | - A Greco
- Dipartimento di Fisica, Università della Calabria, Arcavacata, Rende, Italy
| | - K T Osman
- Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK
| | - S Oughton
- Department of Mathematics, University of Waikato, Hamilton, New Zealand
| | - P Dmitruk
- Departamento de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Coburn JT, Forman MA, Smith CW, Vasquez BJ, Stawarz JE. Third-moment descriptions of the interplanetary turbulent cascade, intermittency and back transfer. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0150. [PMID: 25848079 PMCID: PMC4394682 DOI: 10.1098/rsta.2014.0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 05/29/2023]
Abstract
We review some aspects of solar wind turbulence with an emphasis on the ability of the turbulence to account for the observed heating of the solar wind. Particular attention is paid to the use of structure functions in computing energy cascade rates and their general agreement with the measured thermal proton heating. We then examine the use of 1 h data samples that are comparable in length to the correlation length for the fluctuations to obtain insights into local inertial range dynamics and find evidence for intermittency in the computed energy cascade rates. When the magnetic energy dominates the kinetic energy, there is evidence of anti-correlation in the cascade of energy associated with the outward- and inward-propagating components that we can only partially explain.
Collapse
Affiliation(s)
- Jesse T Coburn
- Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Miriam A Forman
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Charles W Smith
- Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Bernard J Vasquez
- Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Julia E Stawarz
- Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
12
|
Oughton S, Matthaeus WH, Wan M, Osman KT. Anisotropy in solar wind plasma turbulence. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140152. [PMID: 25848082 PMCID: PMC4394683 DOI: 10.1098/rsta.2014.0152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 06/01/2023]
Abstract
A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.
Collapse
Affiliation(s)
- S Oughton
- Department of Mathematics, University of Waikato, Hamilton 3240, New Zealand
| | - W H Matthaeus
- Department of Physics and Astronomy, University of Delaware, DE 19716, USA
| | - M Wan
- Department of Physics and Astronomy, University of Delaware, DE 19716, USA
| | - K T Osman
- Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
13
|
Gary SP. Short-wavelength plasma turbulence and temperature anisotropy instabilities: recent computational progress. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140149. [PMID: 25848081 PMCID: PMC4394681 DOI: 10.1098/rsta.2014.0149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 06/01/2023]
Abstract
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. Temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave-particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius. The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.
Collapse
|
14
|
Cranmer SR, Asgari-Targhi M, Miralles MP, Raymond JC, Strachan L, Tian H, Woolsey LN. The role of turbulence in coronal heating and solar wind expansion. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140148. [PMID: 25848083 PMCID: PMC4394680 DOI: 10.1098/rsta.2014.0148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 06/01/2023]
Abstract
Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona.
Collapse
Affiliation(s)
- Steven R Cranmer
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA Laboratory for Atmospheric and Space Physics, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 8030, USA
| | | | - Mari Paz Miralles
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
| | - John C Raymond
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
| | - Leonard Strachan
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
| | - Hui Tian
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
| | - Lauren N Woolsey
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Riazantseva MO, Budaev VP, Zelenyi LM, Zastenker GN, Pavlos GP, Safrankova J, Nemecek Z, Prech L, Nemec F. Dynamic properties of small-scale solar wind plasma fluctuations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0146. [PMID: 25848078 PMCID: PMC4394678 DOI: 10.1098/rsta.2014.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 06/01/2023]
Abstract
The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows.
Collapse
Affiliation(s)
- M O Riazantseva
- Space Research Institute (IKI), Russian Academy of Science, Moscow, Russia Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
| | - V P Budaev
- Space Research Institute (IKI), Russian Academy of Science, Moscow, Russia National Research Centre 'Kurchatov Institute', Moscow, Russia
| | - L M Zelenyi
- Space Research Institute (IKI), Russian Academy of Science, Moscow, Russia
| | - G N Zastenker
- Space Research Institute (IKI), Russian Academy of Science, Moscow, Russia
| | - G P Pavlos
- Democritus University of Thrace, Department of Electrical Engineering, Xanthi, Greece
| | - J Safrankova
- Charles University in Prague, Prague, Czech Republic
| | - Z Nemecek
- Charles University in Prague, Prague, Czech Republic
| | - L Prech
- Charles University in Prague, Prague, Czech Republic
| | - F Nemec
- Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
16
|
Kiyani KH, Osman KT, Chapman SC. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0155. [PMID: 25848077 PMCID: PMC4394685 DOI: 10.1098/rsta.2014.0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 06/01/2023]
Abstract
The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By 'kinetic' we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius--the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular.
Collapse
Affiliation(s)
- Khurom H Kiyani
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK Laboratoire de Physique des Plasmas, École Polytechnique, 91128 Palaiseau CEDEX, France
| | - Kareem T Osman
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Sandra C Chapman
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
17
|
Lazarian A, Eyink G, Vishniac E, Kowal G. Turbulent reconnection and its implications. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140144. [PMID: 25848076 PMCID: PMC4394676 DOI: 10.1098/rsta.2014.0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 06/01/2023]
Abstract
Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700-718 (doi:10.1086/307233)) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to solar flares and γ-ray bursts. With reference to experiments, we analyse solar observations in situ as measurements in the solar wind or heliospheric current sheet and show the correspondence of data with turbulent reconnection predictions. Finally, we discuss first-order Fermi acceleration of particles that is a natural consequence of the turbulent reconnection.
Collapse
Affiliation(s)
- A Lazarian
- Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706, USA
| | - G Eyink
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - E Vishniac
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - G Kowal
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000-Ermelino Matarazzo, CEP 03828-000, São Paulo, Brazil
| |
Collapse
|