1
|
Krause AL, Gaffney EA, Maini PK, Klika V. Introduction to 'Recent progress and open frontiers in Turing's theory of morphogenesis'. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200280. [PMID: 34743606 PMCID: PMC8580473 DOI: 10.1098/rsta.2020.0280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elucidating pattern forming processes is an important problem in the physical, chemical and biological sciences. Turing's contribution, after being initially neglected, eventually catalysed a huge amount of work from mathematicians, physicists, chemists and biologists aimed towards understanding how steady spatial patterns can emerge from homogeneous chemical mixtures due to the reaction and diffusion of different chemical species. While this theory has been developed mathematically and investigated experimentally for over half a century, many questions still remain unresolved. This theme issue places Turing's theory of pattern formation in a modern context, discussing the current frontiers in foundational aspects of pattern formation in reaction-diffusion and related systems. It highlights ongoing work in chemical, synthetic and developmental settings which is helping to elucidate how important Turing's mechanism is for real morphogenesis, while highlighting gaps that remain in matching theory to reality. The theme issue also surveys a variety of recent mathematical research pushing the boundaries of Turing's original theory to more realistic and complicated settings, as well as discussing open theoretical challenges in the analysis of such models. It aims to consolidate current research frontiers and highlight some of the most promising future directions. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Collapse
Affiliation(s)
- Andrew L. Krause
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
- Department of Mathematical Sciences, Durham University, Upper Mountjoy Campus, Stockton Rd, Durham DH1 3LE, UK
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Václav Klika
- Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova, 13, 120 00 Praha, Czech Republic
| |
Collapse
|
2
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Characterization of Pseudomonas aeruginosa Films on Different Inorganic Surfaces before and after UV Light Exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10806-10815. [PMID: 30122052 DOI: 10.1021/acs.langmuir.8b02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The changes of the surface properties of Au, GaN, and SiO x after UV light irradiation were used to actively influence the process of formation of Pseudomonas aeruginosa films. The interfacial properties of the substrates were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The changes in the P. aeruginosa film properties were accessed by analyzing adhesion force maps and quantifying the intracellular Ca2+ concentration. The collected analysis indicates that the alteration of the inorganic materials' surface chemistry can lead to differences in biofilm formation and variable response from P. aeruginosa cells.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Dennis R LaJeunesse
- Joint School of Nanoscience and Nanoengineering , University of North Carolina-Greensboro and North Carolina A&T State University , Greensboro , North Carolina 27401 , United States
| | - Ramon Collazo
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
3
|
Lebedev N, Yates MD, Griva I, Tender LM. Internal Redox Polarity of an Individual G. sulfurreducens Bacterial Cell Attached to an Inorganic Substrate. Chemphyschem 2018; 19:1820-1829. [PMID: 29873443 DOI: 10.1002/cphc.201800289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 11/09/2022]
Abstract
Bacterial cell polarity is an internal asymmetric distribution of subcellular components, including proteins, lipids, and other molecules that correlates with the cell ability to sense energy and metabolite sources, chemical signals, quorum signals, toxins, and movement in the desired directions. This ability also plays central role in cell attachment to various surfaces and biofilm formation. Mechanisms and factors controlling formation of this cell internal asymmetry are not completely understood. As a step in this direction, in the present work, we develop an approach for analyzing how information about inorganic substrate can be non-genetically coded inside an individual bacterial cell. As a model system, we use G. sulfurreducens cells attached to an inorganic mineral, mica. The approach utilizes confocal Raman microscopy, Gaussian deconvolution, and Principal Component Analysis (PCA) and allows for quick label-free identification of the molecular signature of cytochrome intracellular location and the cell to substrate binding down to the level of individual bacterial cells. Our results describe a spectroscopic signature of cell adhesion and how the information about cell adhesion can be coded inside individual bacterial cells.
Collapse
Affiliation(s)
- Nikolai Lebedev
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Matthew D Yates
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor Griva
- Department of Mathematical Sciences and Center of Simulation and Modeling, George Mason University, Fairfax, VA, 22030, USA
| | - Leonard M Tender
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
4
|
Performance limits and trade-offs in entropy-driven biochemical computers. J Theor Biol 2018; 443:1-9. [DOI: 10.1016/j.jtbi.2018.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/19/2022]
|
5
|
Naylor J, Fellermann H, Ding Y, Mohammed WK, Jakubovics NS, Mukherjee J, Biggs CA, Wright PC, Krasnogor N. Simbiotics: A Multiscale Integrative Platform for 3D Modeling of Bacterial Populations. ACS Synth Biol 2017; 6:1194-1210. [PMID: 28475309 DOI: 10.1021/acssynbio.6b00315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Simbiotics is a spatially explicit multiscale modeling platform for the design, simulation and analysis of bacterial populations. Systems ranging from planktonic cells and colonies, to biofilm formation and development may be modeled. Representation of biological systems in Simbiotics is flexible, and user-defined processes may be in a variety of forms depending on desired model abstraction. Simbiotics provides a library of modules such as cell geometries, physical force dynamics, genetic circuits, metabolic pathways, chemical diffusion and cell interactions. Model defined processes are integrated and scheduled for parallel multithread and multi-CPU execution. A virtual lab provides the modeler with analysis modules and some simulated lab equipment, enabling automation of sample interaction and data collection. An extendable and modular framework allows for the platform to be updated as novel models of bacteria are developed, coupled with an intuitive user interface to allow for model definitions with minimal programming experience. Simbiotics can integrate existing standards such as SBML, and process microscopy images to initialize the 3D spatial configuration of bacteria consortia. Two case studies, used to illustrate the platform flexibility, focus on the physical properties of the biosystems modeled. These pilot case studies demonstrate Simbiotics versatility in modeling and analysis of natural systems and as a CAD tool for synthetic biology.
Collapse
Affiliation(s)
- Jonathan Naylor
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Harold Fellermann
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Yuchun Ding
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Waleed K. Mohammed
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, U.K
| | | | - Joy Mukherjee
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, U.K
| | - Catherine A. Biggs
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, U.K
| | - Phillip C. Wright
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Natalio Krasnogor
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| |
Collapse
|
6
|
Kendon V, Sebald A, Stepney S. Heterotic computing: exploiting hybrid computational devices. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2015.0091. [PMID: 26078351 DOI: 10.1098/rsta.2015.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Current computational theory deals almost exclusively with single models: classical, neural, analogue, quantum, etc. In practice, researchers use ad hoc combinations, realizing only recently that they can be fundamentally more powerful than the individual parts. A Theo Murphy meeting brought together theorists and practitioners of various types of computing, to engage in combining the individual strengths to produce powerful new heterotic devices. 'Heterotic computing' is defined as a combination of two or more computational systems such that they provide an advantage over either substrate used separately. This post-meeting collection of articles provides a wide-ranging survey of the state of the art in diverse computational paradigms, together with reflections on their future combination into powerful and practical applications.
Collapse
Affiliation(s)
- Viv Kendon
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Angelika Sebald
- Department of Chemistry, University of York, York YO10 5DD, UK York Centre for Complex Systems Analysis, University of York, York YO10 5DD, UK
| | - Susan Stepney
- Department of Computer Science, University of York, York YO10 5DD, UK York Centre for Complex Systems Analysis, University of York, York YO10 5DD, UK
| |
Collapse
|