1
|
Zergani F, Marques JMC, Bartolomei M, Pirani F. Borophene nanoclusters: Energetics and structures from analytical potentials. J Chem Phys 2024; 161:204303. [PMID: 39584550 DOI: 10.1063/5.0239149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
Boron shows a variety of properties, determining a chemistry rich and complementary to that of carbon, the neighbor atom in the Periodic Table. In this work, we investigated the strength and nature of the interaction involving B12 or B36 monomer, which represent molecular prototypes of borophene, the two-dimensional allotrope of elemental boron. For the representation of the intermolecular interaction, we developed new potential energy surfaces (PESs) that are based on accurate ab initio or density functional theory data. It is shown that borophene molecules are bound by weak intermolecular interactions of van der Waals nature, perturbed by antiaromatic effects. Moreover, the proposed PESs are given in an analytical form proper to investigate the structures and energetics of (B12)n and (B36)n clusters (with n = 2-10) by applying a global geometry optimization procedure. It is found that the most stable structures of (B12)n favor close contacts between the edges of the monomers, leading to cage-like clusters as n increases, and conversely, (B36)n clusters are mainly composed of stacked or herringbone structures. These results suggest the possibility to produce a novel class of two-dimensional borophene materials, exhibiting different features compared to graphene like structures, which could be of interest for the nanotechnology.
Collapse
Affiliation(s)
- Farideh Zergani
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jorge M C Marques
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Roth M, Toker Y, Major DT. Monte Carlo-Simulated Annealing and Machine Learning-Based Funneled Approach for Finding the Global Minimum Structure of Molecular Clusters. ACS OMEGA 2024; 9:1298-1309. [PMID: 38222530 PMCID: PMC10785639 DOI: 10.1021/acsomega.3c07600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024]
Abstract
Understanding the physical underpinnings and geometry of molecular clusters is of great importance in many fields, ranging from studying the beginning of the universe to the formation of atmospheric particles. To this end, several approaches have been suggested, yet identifying the most stable cluster geometry (i.e., global potential energy minimum) remains a challenge, especially for highly symmetric clusters. Here, we suggest a new funneled Monte Carlo-based simulated annealing (SA) approach, which includes two key steps: generation of symmetrical clusters and classification of the clusters according to their geometry using machine learning (MCSA-ML). We demonstrate the merits of the MCSA-ML method in comparison to other approaches on several Lennard-Jones (LJ) clusters and four molecular clusters-Ser8(Cl-)2, H+(H2O)6, Ag+(CO2)8, and Bet4Cl-. For the latter of these clusters, the correct structure is unknown, and hence, we compare the experimental and simulated fragmentation patterns, and the fragmentation of the proposed global minimum matches experiments closely. Additionally, based on the fragmentation of the predicted betaine cluster, we were able to identify hitherto unknown neutral fragmentation channels. In comparison to results obtained with other methods, we demonstrated a superior ability of MCSA-ML to predict clusters with high symmetry and similar abilities to predict clusters with asymmetrical structures.
Collapse
Affiliation(s)
- Michal Roth
- Department
of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yoni Toker
- Department
of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dan T. Major
- Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Department
of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
3
|
Toward an Ideal Particle Swarm Optimizer for Multidimensional Functions. INFORMATION 2022. [DOI: 10.3390/info13050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Particle Swarm Optimization (PSO) method is a global optimization technique based on the gradual evolution of a population of solutions called particles. The method evolves the particles based on both the best position of each of them in the past and the best position of the whole. Due to its simplicity, the method has found application in many scientific areas, and for this reason, during the last few years, many modifications have been presented. This paper introduces three modifications to the method that aim to reduce the required number of function calls while maintaining the accuracy of the method in locating the global minimum. These modifications affect important components of the method, such as how fast the particles change or even how the method is terminated. The above modifications were tested on a number of known universal optimization problems from the relevant literature, and the results were compared with similar techniques.
Collapse
|
4
|
Correia CFO, Marques JMC, Bartolomei M, Pirani F, Maçôas E, G Martinho JM. Aggregation of coronene: the effect of carboxyl and amine functional groups. Phys Chem Chem Phys 2021; 23:1500-1509. [PMID: 33400746 DOI: 10.1039/d0cp05447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation of coronene is relevant to understand the formation of carbon nanomaterials, including graphene quantum dots (GQDs) that show exceptional photophysical properties. This article evaluates the influence of carboxyl and amine substituting groups on the aggregation of coronene by performing a global optimization study based on a new potential energy surface. The structures of clusters with substituted coronene are similar to those formed by un-substituted monomers, that is, stacked (non-stacked) motifs are favoured for small-size (large-size) clusters. Nonetheless, the presence of carboxyl and amine groups leads to an increase of the number of local minima of comparable energy. The clusters with substituted monomers have also shown to enhance the attractive component interaction, which can be attributed to weak induction and charge transfer effects and to stronger electrostatic contributions. Moreover, the calculated height of magic-number structures of the clusters in this work is compatible with the morphology of the GQDs reported in the literature.
Collapse
Affiliation(s)
- C F O Correia
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal.
| | - J M C Marques
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - M Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - F Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy.
| | - E Maçôas
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal.
| | - J M G Martinho
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal.
| |
Collapse
|
5
|
Jesus WS, Prudente FV, Marques JMC, Pereira FB. Modeling microsolvation clusters with electronic-structure calculations guided by analytical potentials and predictive machine learning techniques. Phys Chem Chem Phys 2021; 23:1738-1749. [PMID: 33427847 DOI: 10.1039/d0cp05200k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We propose a new methodology to study, at the density functional theory (DFT) level, the clusters resulting from the microsolvation of alkali-metal ions with rare-gas atoms. The workflow begins with a global optimization search to generate a pool of low-energy minimum structures for different cluster sizes. This is achieved by employing an analytical potential energy surface (PES) and an evolutionary algorithm (EA). The next main stage of the methodology is devoted to establish an adequate DFT approach to treat the microsolvation system, through a systematic benchmark study involving several combinations of functionals and basis sets, in order to characterize the global minimum structures of the smaller clusters. In the next stage, we apply machine learning (ML) classification algorithms to predict how the low-energy minima of the analytical PES map to the DFT ones. An early and accurate detection of likely DFT local minima is extremely important to guide the choice of the most promising low-energy minima of large clusters to be re-optimized at the DFT level of theory. In this work, the methodology was applied to the Li+Krn (n = 2-14 and 16) microsolvation clusters for which the most competitive DFT approach was found to be the B3LYP-D3/aug-pcseg-1. Additionally, the ML classifier was able to accurately predict most of the solutions to be re-optimized at the DFT level of theory, thereby greatly enhancing the efficiency of the process and allowing its applicability to larger clusters.
Collapse
Affiliation(s)
- W S Jesus
- Instituto de Física, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - F V Prudente
- Instituto de Física, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - J M C Marques
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - F B Pereira
- Coimbra Polytechnic - ISEC, Coimbra, Portugal and Centro de Informática e Sistemas da Universidade de Coimbra (CISUC), Coimbra, Portugal.
| |
Collapse
|
6
|
Nunzi F, Pannacci G, Tarantelli F, Belpassi L, Cappelletti D, Falcinelli S, Pirani F. Leading Interaction Components in the Structure and Reactivity of Noble Gases Compounds. Molecules 2020; 25:molecules25102367. [PMID: 32443725 PMCID: PMC7287633 DOI: 10.3390/molecules25102367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The nature, strength, range and role of the bonds in adducts of noble gas atoms with both neutral and ionic partners have been investigated by exploiting a fine-tuned integrated phenomenological–theoretical approach. The identification of the leading interaction components in the noble gases adducts and their modeling allows the encompassing of the transitions from pure noncovalent to covalent bound aggregates and to rationalize the anomalous behavior (deviations from noncovalent type interaction) pointed out in peculiar cases. Selected adducts affected by a weak chemical bond, as those promoting the formation of the intermolecular halogen bond, are also properly rationalized. The behavior of noble gas atoms excited in their long-life metastable states, showing a strongly enhanced reactivity, has been also enclosed in the present investigation.
Collapse
Affiliation(s)
- Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
- Correspondence: (F.N.); (F.P.)
| | - Giacomo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
| | - Francesco Tarantelli
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
| | - Leonardo Belpassi
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
| | - Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215 Perugia, Italy;
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
- Correspondence: (F.N.); (F.P.)
| |
Collapse
|
7
|
Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks. MATHEMATICS 2020. [DOI: 10.3390/math8050801] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We study the global asymptotic stability problem with respect to the fractional-order quaternion-valued bidirectional associative memory neural network (FQVBAMNN) models in this paper. Whether the real and imaginary parts of quaternion-valued activation functions are expressed implicitly or explicitly, they are considered to meet the global Lipschitz condition in the quaternion field. New sufficient conditions are derived by applying the principle of homeomorphism, Lyapunov fractional-order method and linear matrix inequality (LMI) approach for the two cases of activation functions. The results confirm the existence, uniqueness and global asymptotic stability of the system’s equilibrium point. Finally, two numerical examples with their simulation results are provided to show the effectiveness of the obtained results.
Collapse
|
8
|
Bartolomei M, Pirani F, Marques JMC. Aggregation enhancement of coronene molecules by seeding with alkali-metal ions. Phys Chem Chem Phys 2019; 21:16005-16016. [PMID: 31297501 DOI: 10.1039/c9cp02658d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microsolvation constitutes the first step in the formation of cluster structures of molecules that surround a solute in the bulk and it allows for a deep insight into the relationship between the structure of the solvation shells and other physical properties. We propose semiempirical potential energy functions that are able to describe the interaction between K+ or Cs+ with coronene. Such functions were calibrated through the comparison with accurate estimations of the interaction between the cation and the planar hydrocarbon, obtained by means of ab initio electronic-structure calculations. By employing the potential energy functions and an evolutionary algorithm (EA), we have investigated the structure and energetics of the clusters resulting from the microsolvation of either K+ or Cs+ with coronene molecules. The reliability of the results for smaller clusters was checked by performing geometry re-optimization exploiting a suitable DFT level of theory. This has allowed for the characterization of the first solvation shells of planar molecules of coronene around an alkali-metal ion. It has also been found that the presence of metal ion impurities considerably enhances the formation of small coronene clusters leading to much stronger binding energies for heterogeneous with respect to homogeneous aggregates. These clusters could represent relevant species involved in the early stages of soot nucleation.
Collapse
Affiliation(s)
- M Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFFCSIC), Serrano 123, 28006 Madrid, Spain.
| | - F Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy.
| | - J M C Marques
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
9
|
Takeuchi H. Size-guided multi-seed heuristic method for geometry optimization of clusters: Application to benzene clusters. J Comput Chem 2018; 39:1738-1746. [PMID: 29737541 DOI: 10.1002/jcc.25349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 11/06/2022]
Abstract
Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroshi Takeuchi
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Su H, Wu Q, Wang H, Wang H. An assessment of the random-phase approximation functional and characteristics analysis for noncovalent cation-π interactions. Phys Chem Chem Phys 2017; 19:26014-26021. [PMID: 28920597 DOI: 10.1039/c7cp04504b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding energy is of great importance in understanding the formation and stability of noncovalent interactions. However, the determination of the binding energy with high precision and efficiency in medium- and long-range noncovalent interactions is still challenging for quantum chemistry. Here, we assess the performance of random-phase approximation (RPA), a fully non-local fifth-rung of the Jacob ladder functional, in determining the binding energy of cation-π systems (cation = Li+, Na+, Be2+, Mg2+, Al+, and NH4+; π = C6H6), which, to the best of our knowledge, has not been investigated. Using experimental results as the benchmark, we systematically compared the RPA method to the other ab initio methods (DFT/B3LYP, MP2, CCSD(T), and QCISD(T)) both in calculation accuracy and efficiency. From the perspective of accuracy, RPA is the best among these approaches, followed by the CCSD(T) and QCISD(T) methods. DFT/B3LYP and MP2 provide the worst accuracy. In addition, the computational efficiency of RPA is much faster than that of CCSD(T) and QCISD(T). We believe that RPA is a robust method for the precise description of medium- and long-range noncovalent interactions and is capable of providing benchmarking data. The interaction strength and interaction nature of cation-π systems are further analyzed by atoms in molecules (AIM) and the color-mapped reduced density gradient (RDG) isosurface, which are consistent with the characteristics of a typical cation-π interaction.
Collapse
Affiliation(s)
- He Su
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | | | | | | |
Collapse
|
11
|
Spezia R, Martínez-Nuñez E, Vazquez S, Hase WL. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20170035. [PMID: 28320909 PMCID: PMC5360905 DOI: 10.1098/rsta.2017.0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Collapse
Affiliation(s)
- Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CEA CNRS Université Paris Saclay, 91025 Evry, France
- LAMBE, Université d'Evry, 91025 Evry, France
| | - Emilio Martínez-Nuñez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Saulo Vazquez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|