1
|
Peterka P, Šobáň Z, Trojánek F, Malý P, Kozák M. High harmonic generation enhanced by magnetic dipole resonance in an amorphous silicon metasurface. OPTICS EXPRESS 2023; 31:6401-6410. [PMID: 36823897 DOI: 10.1364/oe.481199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
We report on the enhancement of high harmonic generation (HHG) yield in a metasurface consisting of amorphous silicon disks in a periodic array on an insulator substrate. The structure was designed and optimized using the finite-difference time-domain method for the maximum enhancement, which reaches the factor of 20-times compared to the unstructred surface. The local field is enhanced by a broadband magnetic resonance mode allowing to use ultrashort laser pulses with Fourier transform limit down to 40 fs. Due to the anisotropic structure of the metasurface, both the local-field enhancement and the HHG yield show strong polarization anisotropy.
Collapse
|
2
|
Kroychuk MK, Shorokhov AS, Yagudin DF, Rakhlin MV, Klimko GV, Toropov AA, Shubina TV, Fedyanin AA. Quantum Dot Photoluminescence Enhancement in GaAs Nanopillar Oligomers Driven by Collective Magnetic Modes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:507. [PMID: 36770468 PMCID: PMC9919544 DOI: 10.3390/nano13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Single photon sources based on semiconductor quantum dots are one of the most prospective elements for optical quantum computing and cryptography. Such systems are often based on Bragg resonators, which provide several ways to control the emission of quantum dots. However, the fabrication of periodic structures with many thin layers is difficult. On the other hand, the coupling of single-photon sources with resonant nanoclusters made of high-index dielectric materials is known as a promising way for emission control. Our experiments and calculations show that the excitation of magnetic Mie-type resonance by linearly polarized light in a GaAs nanopillar oligomer with embedded InAs quantum dots leads to quantum emitters absorption efficiency enhancement. Moreover, the nanoresonator at the wavelength of magnetic dipole resonance also acts as a nanoantenna for a generated signal, allowing control over its radiation spatial profile. We experimentally demonstrated an order of magnitude emission enhancement and numerically reached forty times gain in comparison with unstructured film. These findings highlight the potential of quantum dots coupling with Mie-resonant oligomers collective modes for nanoscale single-photon sources development.
Collapse
Affiliation(s)
- Maria K. Kroychuk
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Damir F. Yagudin
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | - Andrey A. Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Liu T, Xiao S, Li B, Gu M, Luan H, Fang X. Third- and Second-Harmonic Generation in All-Dielectric Nanostructures: A Mini Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.891892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Frequency conversion such as harmonic generation is a fundamental physical process in nonlinear optics. The conventional nonlinear optical systems suffer from bulky size and cumbersome phase-matching conditions due to the inherently weak nonlinear response of natural materials. Aiming at the manipulation of nonlinear frequency conversion at the nanoscale with favorable conversion efficiencies, recent research has shifted toward the integration of nonlinear functionality into nanophotonics. Compared with plasmonic nanostructures showing high dissipative losses and thermal heating, all-dielectric nanostructures have demonstrated many excellent properties, including low loss, high damage threshold, and controllable resonant electric and magnetic optical nonlinearity. In this review, we cover the recent advances in nonlinear nanophotonics, with special emphasis on third- and second-harmonic generation from all-dielectric nanoantennas and metasurfaces. We discuss the main theoretical concepts, the design principles, and the functionalities of third- and second-harmonic generation processes from dielectric nanostructures and provide an outlook on the future directions and developments of this research field.
Collapse
|
4
|
Wang R, Xu L, Wang J, Sun L, Jiao Y, Meng Y, Chen S, Chang C, Fan C. Electric Fano resonance-based terahertz metasensors. NANOSCALE 2021; 13:18467-18472. [PMID: 34726683 DOI: 10.1039/d1nr04477j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An ultra-sensitive THz metasensor is presented based on quasi-BIC Fano resonance, which can distinguish extremely dilute concentrations (nM) of solutions. It provides a nondestructive sensing approach for disease prevention and diagnosis. However, the main drawback limiting the performance of THz-based bio-chemical sensors is the weak interaction between the optical field and the analyte, the characteristic scale of which is mismatched with the THz wavelength, leading to low sensitivity. Herein, we present an ultra-sensitive THz metasensor based on an electric Fano resonant metasurface which consists of three gold microrods arranged periodically. The designed electric Fano resonance provides a strong near-field enhancement near the surface of the microstructure, significantly boosting the light-analyte interactions and thus the sensitivity. Such an electric Fano resonance is formed by the interference between a leaky electric dipole resonance and a bound toroidal dipole mode which is a symmetry-protected bound state in the continuum supported by the sub-diffractive periodic system here. Owing to the strong electric fields generated near the interface of our microstructure around the toroidal dipole BIC, the proposed structure can distinguish extremely dilute concentrations (nM) of solutions. Importantly, by controlling the degree of geometrical asymmetry, the BIC-inspired mechanism provides an important and simple tool to engineer and tailor the linewidth and Q-factor of our proposed electric Fano resonance, indicating the ability to realize different biosensors for different optical regimes. Our results open new possibilities to realize a non-destructive and non-contact quantitative inspection of low-concentration solutions, providing a useful sensing approach for disease prevention and diagnosis.
Collapse
Affiliation(s)
- Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China.
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Jiayi Wang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
| | - Lang Sun
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China.
| | - Yanan Jiao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yuan Meng
- Key Laboratory of Photonics Control Technology of the Ministry of Education, Tsinghua University, China
| | - Shuo Chen
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China.
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China.
- School of Physics, Peking University, Beijing, 100871, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Kroychuk MK, Shorokhov AS, Yagudin DF, Shilkin DA, Smirnova DA, Volkovskaya I, Shcherbakov MR, Shvets G, Fedyanin AA. Enhanced Nonlinear Light Generation in Oligomers of Silicon Nanoparticles under Vector Beam Illumination. NANO LETTERS 2020; 20:3471-3477. [PMID: 32324416 DOI: 10.1021/acs.nanolett.0c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All-dielectric nanoparticle oligomers have recently emerged as promising candidates for nonlinear optical applications. Their highly resonant collective modes, however, are difficult to access by linearly polarized beams due to symmetry restraints. In this paper, we propose a new way to increase the efficiency of nonlinear processes in all-dielectric oligomers by tightly focused azimuthally polarized cylindrical vector beam illumination. We demonstrate two orders enhancement of the third-harmonic generation signal, governed by a collective optical mode represented by out-of-plane magnetic dipoles. Crucially, the collective mode is characterized by strong electromagnetic field localization in the bulk of the nonlinear material. For comparison, we measure third-harmonic generation in the same oligomer pumped with linearly and radially polarized fundamental beams, which both show significantly lower harmonic output. We also provide numerical analysis to describe and characterize the observed effect. Our findings open a new route to enhance and modulate the third-harmonic generation efficiency of Mie-resonant isolated nanostructures by tailoring the polarization of the pump beam.
Collapse
Affiliation(s)
- Maria K Kroychuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Damir F Yagudin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daniil A Shilkin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daria A Smirnova
- Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia
- Institute of Applied Physics, Nizhny Novgorod 603950, Russia
| | | | - Maxim R Shcherbakov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Andrey A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Sautter JD, Xu L, Miroshnichenko AE, Lysevych M, Volkovskaya I, Smirnova DA, Camacho-Morales R, Zangeneh Kamali K, Karouta F, Vora K, Tan HH, Kauranen M, Staude I, Jagadish C, Neshev DN, Rahmani M. Tailoring Second-Harmonic Emission from (111)-GaAs Nanoantennas. NANO LETTERS 2019; 19:3905-3911. [PMID: 31136193 DOI: 10.1021/acs.nanolett.9b01112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Second-harmonic generation (SHG) in resonant dielectric Mie-scattering nanoparticles has been hailed as a powerful platform for nonlinear light sources. While bulk-SHG is suppressed in elemental semiconductors, for example, silicon and germanium due to their centrosymmetry, the group of zincblende III-V compound semiconductors, especially (100)-grown AlGaAs and GaAs, have recently been presented as promising alternatives. However, major obstacles to push the technology toward practical applications are the limited control over directionality of the SH emission and especially zero forward/backward radiation, resulting from the peculiar nature of the second-order nonlinear susceptibility of this otherwise highly promising group of semiconductors. Furthermore, the generated SH signal for (100)-GaAs nanoparticles depends strongly on the polarization of the pump. In this work, we provide both theoretically and experimentally a solution to these problems by presenting the first SHG nanoantennas made from (111)-GaAs embedded in a low index material. These nanoantennas show superior forward directionality compared to their (100)-counterparts. Most importantly, based on the special symmetry of the crystalline structure, it is possible to manipulate the SHG radiation pattern of the nanoantennas by changing the pump polarization without affecting the linear properties and the total nonlinear conversion efficiency, hence paving the way for efficient and flexible nonlinear beam-shaping devices.
Collapse
Affiliation(s)
- Jürgen D Sautter
- Nonlinear Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 Australia
- Institute of Applied Physics, Abbe Center of Photonics , Friedrich Schiller University Jena , 07745 Jena , Germany
| | - Lei Xu
- School of Engineering and Information Technology , University of New South Wales , Canberra , ACT 2600 , Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology , University of New South Wales , Canberra , ACT 2600 , Australia
| | - Mykhaylo Lysevych
- Department of Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - Irina Volkovskaya
- Institute of Applied Physics , Russian Academy of Sciences , Nizhny Novgorod 603950 , Russia
| | - Daria A Smirnova
- Nonlinear Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 Australia
| | - Rocio Camacho-Morales
- Nonlinear Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 Australia
| | - Khosro Zangeneh Kamali
- Nonlinear Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 Australia
| | - Fouad Karouta
- Department of Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - Kaushal Vora
- Department of Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - Hoe H Tan
- Department of Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - Martti Kauranen
- Photonics Laboratory, Physics Unit , Tampere University , P.O. Box 692, FI-33014 Tampere , Finland
| | - Isabelle Staude
- Institute of Applied Physics, Abbe Center of Photonics , Friedrich Schiller University Jena , 07745 Jena , Germany
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - Dragomir N Neshev
- Nonlinear Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 Australia
| | - Mohsen Rahmani
- Nonlinear Physics Centre, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 Australia
| |
Collapse
|
7
|
Kim Y, Moon K, Lee YJ, Hong S, Kwon SH. Improving Upconversion Efficiency Based on Cross-Patterned Upconversion Material Slot Waveguides on a Silicon Layer. NANOMATERIALS 2019; 9:nano9040520. [PMID: 30987074 PMCID: PMC6523838 DOI: 10.3390/nano9040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 11/25/2022]
Abstract
Upconversion (UC) materials can be used to harvest near-infrared (NIR) light and convert it into visible light. Although this improves optical device operating spectral range and efficiency, e.g., solar cells, typical UC material conversion efficiency is too low for practical devices. We propose a cross-patterned slot waveguide constructed from UC material embedded in a high index semiconductor layer to improve UC. Since the slot waveguide mode is induced in the low index UC slot, NIR absorption (~970 nm) increased 25-fold compared with film structures. Furthermore, the spontaneous emission enhancement rate at 660 nm increased 9.6-fold compared to the reference film due to resonance excited in the UC slot (Purcell effect). Thus, the proposed UC slot array structure improved UC efficiency 240-fold considering absorption and emission enhancements. This double resonance UC improvement can be applied to practical optical devices.
Collapse
Affiliation(s)
- Youngsoo Kim
- Department of Physics, Chung-Ang University, Seoul 06974, Korea.
| | - Kihwan Moon
- Department of Physics, Chung-Ang University, Seoul 06974, Korea.
| | - Young Jin Lee
- Department of Physics, Chung-Ang University, Seoul 06974, Korea.
| | - Seokhyeon Hong
- Department of Physics, Chung-Ang University, Seoul 06974, Korea.
| | - Soon-Hong Kwon
- Department of Physics, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|