• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (1468)   Subscriber (50681)
For: McCullough M, Small M, Iu HHC, Stemler T. Multiscale ordinal network analysis of human cardiac dynamics. Philos Trans A Math Phys Eng Sci 2017;375:rsta.2016.0292. [PMID: 28507237 PMCID: PMC5434082 DOI: 10.1098/rsta.2016.0292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 05/24/2023]
Number Cited by Other Article(s)
1
Lu J, Small M. A mutual information statistic for assessing state space partitions of dynamical systems. CHAOS (WOODBURY, N.Y.) 2024;34:111102. [PMID: 39485135 DOI: 10.1063/5.0235846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
2
Wu J, Wan Q, Zhang Z, Xu J, Cheng W, Chen D, Zhou X. Correlation Fuzzy measure of multivariate time series for signature recognition. PLoS One 2024;19:e0309262. [PMID: 39374252 PMCID: PMC11457994 DOI: 10.1371/journal.pone.0309262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 10/09/2024]  Open
3
Voltarelli LGJM, Pessa AAB, Zunino L, Zola RS, Lenzi EK, Perc M, Ribeiro HV. Characterizing unstructured data with the nearest neighbor permutation entropy. CHAOS (WOODBURY, N.Y.) 2024;34:053130. [PMID: 38780438 DOI: 10.1063/5.0209206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
4
Almendral JA, Leyva I, Sendiña-Nadal I. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods. ENTROPY (BASEL, SWITZERLAND) 2023;25:1079. [PMID: 37510026 PMCID: PMC10378875 DOI: 10.3390/e25071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
5
Chen X, Xu G, He B, Zhang S, Su Z, Jia Y, Zhang X, Zhao Z. Capturing synchronization with complexity measure of ordinal pattern transition network constructed by crossplot. ROYAL SOCIETY OPEN SCIENCE 2023;10:221067. [PMID: 37388315 PMCID: PMC10300663 DOI: 10.1098/rsos.221067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
6
Yang G, Xia S. Hard c-mean transition network method for analysis of time series. CHAOS (WOODBURY, N.Y.) 2023;33:2890947. [PMID: 37192393 DOI: 10.1063/5.0147171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
7
Muñoz-Guillermo M. Multiscale two-dimensional permutation entropy to analyze encrypted images. CHAOS (WOODBURY, N.Y.) 2023;33:013112. [PMID: 36725655 DOI: 10.1063/5.0130538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
8
Characterisation of neonatal cardiac dynamics using ordinal partition network. Med Biol Eng Comput 2022;60:829-842. [PMID: 35119556 DOI: 10.1007/s11517-021-02481-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
9
Nomi Y, Gotoda H, Fukuda S, Almarcha C. Complex network analysis of spatiotemporal dynamics of premixed flame in a Hele-Shaw cell: A transition from chaos to stochastic state. CHAOS (WOODBURY, N.Y.) 2021;31:123133. [PMID: 34972344 DOI: 10.1063/5.0070526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
10
Tan E, Corrêa D, Stemler T, Small M. Grading your models: Assessing dynamics learning of models using persistent homology. CHAOS (WOODBURY, N.Y.) 2021;31:123109. [PMID: 34972316 DOI: 10.1063/5.0073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
11
Gao Z, Dang W, Wang X, Hong X, Hou L, Ma K, Perc M. Complex networks and deep learning for EEG signal analysis. Cogn Neurodyn 2021;15:369-388. [PMID: 34040666 PMCID: PMC8131466 DOI: 10.1007/s11571-020-09626-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/20/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022]  Open
12
Pessa AAB, Ribeiro HV. ordpy: A Python package for data analysis with permutation entropy and ordinal network methods. CHAOS (WOODBURY, N.Y.) 2021;31:063110. [PMID: 34241315 DOI: 10.1063/5.0049901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
13
Huang M, Sun Z, Donner RV, Zhang J, Guan S, Zou Y. Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks. CHAOS (WOODBURY, N.Y.) 2021;31:033127. [PMID: 33810737 DOI: 10.1063/5.0038876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
14
Sakellariou K, Stemler T, Small M. Estimating topological entropy using ordinal partition networks. Phys Rev E 2021;103:022214. [PMID: 33736019 DOI: 10.1103/physreve.103.022214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/02/2021] [Indexed: 11/07/2022]
15
Kottlarz I, Berg S, Toscano-Tejeida D, Steinmann I, Bähr M, Luther S, Wilke M, Parlitz U, Schlemmer A. Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities. Front Physiol 2021;11:614565. [PMID: 33597891 PMCID: PMC7882607 DOI: 10.3389/fphys.2020.614565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]  Open
16
Pessa AAB, Ribeiro HV. Mapping images into ordinal networks. Phys Rev E 2020;102:052312. [PMID: 33327134 DOI: 10.1103/physreve.102.052312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/03/2020] [Indexed: 05/09/2023]
17
Olivares F, Zanin M, Zunino L, Pérez DG. Contrasting chaotic with stochastic dynamics via ordinal transition networks. CHAOS (WOODBURY, N.Y.) 2020;30:063101. [PMID: 32611124 DOI: 10.1063/1.5142500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
18
Wu H, Zou Y, Alves LM, Macau EEN, Sampaio G, Marengo JA. Uncovering episodic influence of oceans on extreme drought events in Northeast Brazil by ordinal partition network approaches. CHAOS (WOODBURY, N.Y.) 2020;30:053104. [PMID: 32491908 DOI: 10.1063/5.0004348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
19
Bandt C. Order patterns, their variation and change points in financial time series and Brownian motion. Stat Pap (Berl) 2020. [DOI: 10.1007/s00362-020-01171-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
20
Sakellariou K, Stemler T, Small M. Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis. Phys Rev E 2019;100:062307. [PMID: 31962534 DOI: 10.1103/physreve.100.062307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 06/10/2023]
21
Pessa AAB, Ribeiro HV. Characterizing stochastic time series with ordinal networks. Phys Rev E 2019;100:042304. [PMID: 31770975 DOI: 10.1103/physreve.100.042304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 06/10/2023]
22
Small Order Patterns in Big Time Series: A Practical Guide. ENTROPY 2019;21:e21060613. [PMID: 33267327 PMCID: PMC7515105 DOI: 10.3390/e21060613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/02/2022]
23
Ruan Y, Donner RV, Guan S, Zou Y. Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series. CHAOS (WOODBURY, N.Y.) 2019;29:043111. [PMID: 31042940 DOI: 10.1063/1.5086527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
24
Wang Y, Weng T, Deng S, Gu C, Yang H. Sampling frequency dependent visibility graphlet approach to time series. CHAOS (WOODBURY, N.Y.) 2019;29:023109. [PMID: 30823737 DOI: 10.1063/1.5074155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
25
Amigó JM, Small M. Mathematical methods in medicine: neuroscience, cardiology and pathology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017;375:20170016. [PMID: 28507240 PMCID: PMC5434085 DOI: 10.1098/rsta.2017.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 05/09/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA