1
|
Stern RJ, Gerya TV. The importance of continents, oceans and plate tectonics for the evolution of complex life: implications for finding extraterrestrial civilizations. Sci Rep 2024; 14:8552. [PMID: 38609425 PMCID: PMC11015018 DOI: 10.1038/s41598-024-54700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/14/2024] [Indexed: 04/14/2024] Open
Abstract
Within the uncertainties of involved astronomical and biological parameters, the Drake Equation typically predicts that there should be many exoplanets in our galaxy hosting active, communicative civilizations (ACCs). These optimistic calculations are however not supported by evidence, which is often referred to as the Fermi Paradox. Here, we elaborate on this long-standing enigma by showing the importance of planetary tectonic style for biological evolution. We summarize growing evidence that a prolonged transition from Mesoproterozoic active single lid tectonics (1.6 to 1.0 Ga) to modern plate tectonics occurred in the Neoproterozoic Era (1.0 to 0.541 Ga), which dramatically accelerated emergence and evolution of complex species. We further suggest that both continents and oceans are required for ACCs because early evolution of simple life must happen in water but late evolution of advanced life capable of creating technology must happen on land. We resolve the Fermi Paradox (1) by adding two additional terms to the Drake Equation: foc (the fraction of habitable exoplanets with significant continents and oceans) and fpt (the fraction of habitable exoplanets with significant continents and oceans that have had plate tectonics operating for at least 0.5 Ga); and (2) by demonstrating that the product of foc and fpt is very small (< 0.00003-0.002). We propose that the lack of evidence for ACCs reflects the scarcity of long-lived plate tectonics and/or continents and oceans on exoplanets with primitive life.
Collapse
Affiliation(s)
- Robert J Stern
- Department of Sustainable Earth Systems Science, University of Texas at Dallas, Richardson, TX, 75083-0688, USA
| | - Taras V Gerya
- Department of Earth Sciences, ETH-Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland.
| |
Collapse
|
2
|
Moore EK, Martinez DL, Srivastava N, Morrison SM, Spielman SJ. Mineral Element Insiders and Outliers Play Crucial Roles in Biological Evolution. Life (Basel) 2022; 12:951. [PMID: 35888041 PMCID: PMC9323150 DOI: 10.3390/life12070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The geosphere of primitive Earth was the source of life's essential building blocks, and the geochemical interactions among chemical elements can inform the origins of biological roles of each element. Minerals provide a record of the fundamental properties that each chemical element contributes to crustal composition, evolution, and subsequent biological utilization. In this study, we investigate correlations between the mineral species and bulk crustal composition of each chemical element. There are statistically significant correlations between the number of elements that each element forms minerals with (#-mineral-elements) and the log of the number of mineral species that each element occurs in, and between #-mineral-elements and the log of the number of mineral localities of that element. There is a lesser correlation between the log of the crustal percentage of each element and #-mineral-elements. In the crustal percentage vs. #-mineral-elements plot, positive outliers have either important biological roles (S, Cu) or toxic biological impacts (Pb, As), while negative outliers have no biological importance (Sc, Ga, Br, Yb). In particular, S is an important bridge element between organic (e.g., amino acids) and inorganic (metal cofactors) biological components. While C and N rarely form minerals together, the two elements commonly form minerals with H, which coincides with the role of H as an electron donor/carrier in biological nitrogen and carbon fixation. Both abundant crustal percentage vs. #-mineral-elements insiders (elements that follow the correlation) and less abundant outsiders (positive outliers from the correlation) have important biological functions as essential structural elements and catalytic cofactors.
Collapse
Affiliation(s)
- Eli K. Moore
- Department of Environmental Science, School of Earth and the Environment, Rowan University, Glassboro, NJ 08028, USA;
| | - Daniella L. Martinez
- Department of Environmental Science, School of Earth and the Environment, Rowan University, Glassboro, NJ 08028, USA;
| | - Naman Srivastava
- Department of Biological Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA; (N.S.); (S.J.S.)
| | - Shaunna M. Morrison
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Stephanie J. Spielman
- Department of Biological Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA; (N.S.); (S.J.S.)
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| |
Collapse
|
3
|
Hawkesworth C, Cawood PA, Dhuime B. The evolution of the continental crust and the onset of plate tectonics. FRONTIERS IN EARTH SCIENCE 2020; 8:326. [PMID: 32944569 PMCID: PMC7116083 DOI: 10.3389/feart.2020.00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Earth is the only known planet where plate tectonics is active, and different studies have concluded that plate tectonics commenced at times from the early Hadean to 700 Ma. Many arguments rely on proxies established on recent examples, such as paired metamorphic belts and magma geochemistry, and it can be difficult to establish the significance of such proxies in a hotter, older Earth. There is the question of scale, and how the results of different case studies are put in a wider global context. We explore approaches that indicate when plate tectonics became the dominant global regime, in part by evaluating when the effects of plate tectonics were established globally, rather than the first sign of its existence regionally. The geological record reflects when the continental crust became rigid enough to facilitate plate tectonics, through the onset of dyke swarms and large sedimentary basins, from relatively high-pressure metamorphism and evidence for crustal thickening. Paired metamorphic belts are a feature of destructive plate margins over the last 700 Myr, but it is difficult to establish whether metamorphic events are associated spatially as well as temporally in older terrains. From 3.8-2.7 Ga, suites of high Th/Nb (subduction-related on the modern Earth) and low Th/Nb (non-subduction-related) magmas were generated at similar times in different locations, and there is a striking link between the geochemistry and the regional tectonic style. Archaean cratons stabilised at different times in different areas from 3.1-2.5 Ga, and the composition of juvenile continental crust changed from mafic to more intermediate compositions. Xenon isotope data indicate that there was little recycling of volatiles before 3 Ga. Evidence for the juxtaposition of continental fragments back to ~2.8 Ga, each with disparate histories highlights that fragments of crust were moving around laterally on the Earth. The reduction in crustal growth at ~ 3 Ga is attributed to an increase in the rates at which differentiated continental crust was destroyed, and that coupled with the other changes at the end of the Archaean are taken to reflect the onset of plate tectonics as the dominant global regime.
Collapse
Affiliation(s)
- Chris Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Peter A. Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Bruno Dhuime
- Géosciences Montpellier, CNRS & Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
4
|
Betzel RF, Wood KC, Angeloni C, Neimark Geffen M, Bassett DS. Stability of spontaneous, correlated activity in mouse auditory cortex. PLoS Comput Biol 2019; 15:e1007360. [PMID: 31815941 PMCID: PMC6968873 DOI: 10.1371/journal.pcbi.1007360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2020] [Accepted: 08/24/2019] [Indexed: 12/31/2022] Open
Abstract
Neural systems can be modeled as complex networks in which neural elements are represented as nodes linked to one another through structural or functional connections. The resulting network can be analyzed using mathematical tools from network science and graph theory to quantify the system’s topological organization and to better understand its function. Here, we used two-photon calcium imaging to record spontaneous activity from the same set of cells in mouse auditory cortex over the course of several weeks. We reconstruct functional networks in which cells are linked to one another by edges weighted according to the correlation of their fluorescence traces. We show that the networks exhibit modular structure across multiple topological scales and that these multi-scale modules unfold as part of a hierarchy. We also show that, on average, network architecture becomes increasingly dissimilar over time, with similarity decaying monotonically with the distance (in time) between sessions. Finally, we show that a small fraction of cells maintain strongly-correlated activity over multiple days, forming a stable temporal core surrounded by a fluctuating and variable periphery. Our work indicates a framework for studying spontaneous activity measured by two-photon calcium imaging using computational methods and graphical models from network science. The methods are flexible and easily extended to additional datasets, opening the possibility of studying cellular level network organization of neural systems and how that organization is modulated by stimuli or altered in models of disease. Neurons coordinate their activity with one another, forming networks that help support adaptive, flexible behavior. Still, little is known about the organization of these networks at the cellular scale and their stability over time. Here, we reconstruct networks from calcium imaging data recorded in mouse primary auditory cortex. We show that these networks exhibit spatially constrained, hierarchical modular structure, which may facilitate specialized information processing. However, we show that connection weights and modular structure are also variable over time, changing on a timescale of days and adopting novel network configurations. Despite this, a small subset of neurons maintain their connections to one another and preserve their modular organization across time, forming a stable temporal core surrounded by a flexible periphery. These findings represent a conceptual bridge linking network analyses of macroscale and cellular-level neuroimaging data. They also represent a complementary approach to existing circuits- and systems-based interrogation of nervous system function, opening the door for deeper and more targeted analysis in the future.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America.,Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America.,Network Science Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Katherine C Wood
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Angeloni
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria Neimark Geffen
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Santa Fe Institute, Santa Fa, New Mexico, United States of America
| |
Collapse
|
5
|
Hawkesworth CJ, Brown M. Earth dynamics and the development of plate tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2018.0228. [PMID: 30275168 PMCID: PMC6189552 DOI: 10.1098/rsta.2018.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 05/08/2023]
Affiliation(s)
- Chris J Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Michael Brown
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|