1
|
Mixon EE, Bauer AM, Blum TB, Valley JW, Rizo H, O’Neil J, Kitajima K. Zircon geochemistry from early evolved terranes records coeval stagnant- and mobile-lid tectonic regimes. Proc Natl Acad Sci U S A 2024; 121:e2405378121. [PMID: 39284064 PMCID: PMC11441487 DOI: 10.1073/pnas.2405378121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 10/02/2024] Open
Abstract
Determining the mechanisms by which the earliest continental crust was generated and reworked is important for constraining the evolution of Earth's geodynamic, surface, and atmospheric conditions. However, the details of early plate tectonic settings often remain obscured by the intervening ~4 Ga of crustal recycling. Covariations of U, Nb, Sc, and Yb in zircon have been shown to faithfully reflect Phanerozoic whole-rock-based plate-tectonic discriminators and are therefore useful in distinguishing zircons crystallized in ridge, plume, and arc-like environments, both in the present and in deep time. However, application of these proxies to deciphering tectonic settings on the early Earth has thus far been limited to select portions of the detrital zircon record. Here, we present in situ trace-element and oxygen isotope compositions for magmatic zircons from crystalline crustal rocks of the Acasta Gneiss Complex and the Saglek-Hebron Complex, Canada. Integrated with information from whole-rock geochemistry and zircon U-Pb, Hf, and O isotopes, our zircon U-Nb-Sc-Yb results reveal that melting of hydrated basalt was not restricted to a single tectonomagmatic process during the Archean but was operative during the reworking of Hadean protocrust and the generation of juvenile crust within two cratons, as early as 3.9 Ga. We observe zircon trace-element compositions indicative of hydrous melting in settings that otherwise host seemingly differing whole-rock geochemistry, zircon Hf, and zircon O isotopes, suggesting contemporaneous operation of stagnant-lid (oceanic plateau) and mobile-lid (arc-like) regimes in the early Archean.
Collapse
Affiliation(s)
- Emily E. Mixon
- Department of Geoscience, University of Wisconsin-Madison, WI
| | - Ann M. Bauer
- Department of Geoscience, University of Wisconsin-Madison, WI
| | - Tyler B. Blum
- Department of Geoscience, University of Wisconsin-Madison, WI
| | - John W. Valley
- Department of Geoscience, University of Wisconsin-Madison, WI
| | - Hanika Rizo
- Department of Earth Sciences, Carleton University, Ottawa, ON, Canada
| | - Jonathan O’Neil
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Kouki Kitajima
- Department of Geoscience, University of Wisconsin-Madison, WI
| |
Collapse
|
2
|
Smit MA, Musiyachenko KA, Goumans J. Archaean continental crust formed from mafic cumulates. Nat Commun 2024; 15:692. [PMID: 38267412 PMCID: PMC10808207 DOI: 10.1038/s41467-024-44849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Large swaths of juvenile crust with tonalite-trondhjemite-granodiorite (TTG) composition were added to the continental crust from about 3.5 billion years ago. Although TTG magmatism marked a pivotal step in early crustal growth and cratonisation, the petrogenetic processes, tectonic setting and sources of TTGs are not well known. Here, we investigate the composition and petrogenesis of Archaean TTGs using high field-strength-element systematics. The Nb concentrations and Ti anomalies of TTGs show the overwhelming effects of amphibole and plagioclase fractionation and permit constraints on the composition of primary TTG melts. These melts are relatively incompatible element-poor and characterised by variably high La/Sm, Sm/Yb and Sr/Y, and positive Eu anomalies. Differences in these parameters are not indicative of melting depth, but instead track differences in the degree of melting and fractional crystallisation. Primary TTGs formed by the melting of rutile- and garnet-bearing plagioclase-cumulate rocks that resided in proto-continental roots. The partial melting of these rocks is part of a causal chain that links TTG magmatism to the formation of sanukitoids and K-rich granites. Together, these processes explain the growth and differentiation of the continental crust during the Archaean without requiring external forcing such as meteorite impact or the start of global plate tectonics.
Collapse
Affiliation(s)
- Matthijs A Smit
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, V6T 1Z4, Canada.
- Department of Geosciences, Swedish Museum of Natural History, Frescativägen 40, SE-104 05, Stockholm, Sweden.
| | - Kira A Musiyachenko
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, V6T 1Z4, Canada
| | - Jeroen Goumans
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
3
|
Oxygen isotopes trace the origins of Earth's earliest continental crust. Nature 2021; 592:70-75. [PMID: 33790444 DOI: 10.1038/s41586-021-03337-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Much of the current volume of Earth's continental crust had formed by the end of the Archaean eon1 (2.5 billion years ago), through melting of hydrated basaltic rocks at depths of approximately 25-50 kilometres, forming sodic granites of the tonalite-trondhjemite-granodiorite (TTG) suite2-6. However, the geodynamic setting and processes involved are debated, with fundamental questions arising, such as how and from where the required water was added to deep-crustal TTG source regions7,8. In addition, there have been no reports of voluminous, homogeneous, basaltic sequences in preserved Archaean crust that are enriched enough in incompatible trace elements to be viable TTG sources5,9. Here we use variations in the oxygen isotope composition of zircon, coupled with whole-rock geochemistry, to identify two distinct groups of TTG. Strongly sodic TTGs represent the most-primitive magmas and contain zircon with oxygen isotope compositions that reflect source rocks that had been hydrated by primordial mantle-derived water. These primitive TTGs do not require a source highly enriched in incompatible trace elements, as 'average' TTG does. By contrast, less sodic 'evolved' TTGs require a source that is enriched in both water derived from the hydrosphere and also incompatible trace elements, which are linked to the introduction of hydrated magmas (sanukitoids) formed by melting of metasomatized mantle lithosphere. By concentrating on data from the Palaeoarchaean crust of the Pilbara Craton, we can discount a subduction setting6,10-13, and instead propose that hydrated and enriched near-surface basaltic rocks were introduced into the mantle through density-driven convective overturn of the crust. These results remove many of the paradoxical impediments to understanding early continental crust formation. Our work suggests that sufficient primordial water was already present in Earth's early mafic crust to produce the primitive nuclei of the continents, with additional hydrated sources created through dynamic processes that are unique to the early Earth.
Collapse
|
4
|
Hawkesworth C, Cawood PA, Dhuime B. The evolution of the continental crust and the onset of plate tectonics. FRONTIERS IN EARTH SCIENCE 2020; 8:326. [PMID: 32944569 PMCID: PMC7116083 DOI: 10.3389/feart.2020.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Earth is the only known planet where plate tectonics is active, and different studies have concluded that plate tectonics commenced at times from the early Hadean to 700 Ma. Many arguments rely on proxies established on recent examples, such as paired metamorphic belts and magma geochemistry, and it can be difficult to establish the significance of such proxies in a hotter, older Earth. There is the question of scale, and how the results of different case studies are put in a wider global context. We explore approaches that indicate when plate tectonics became the dominant global regime, in part by evaluating when the effects of plate tectonics were established globally, rather than the first sign of its existence regionally. The geological record reflects when the continental crust became rigid enough to facilitate plate tectonics, through the onset of dyke swarms and large sedimentary basins, from relatively high-pressure metamorphism and evidence for crustal thickening. Paired metamorphic belts are a feature of destructive plate margins over the last 700 Myr, but it is difficult to establish whether metamorphic events are associated spatially as well as temporally in older terrains. From 3.8-2.7 Ga, suites of high Th/Nb (subduction-related on the modern Earth) and low Th/Nb (non-subduction-related) magmas were generated at similar times in different locations, and there is a striking link between the geochemistry and the regional tectonic style. Archaean cratons stabilised at different times in different areas from 3.1-2.5 Ga, and the composition of juvenile continental crust changed from mafic to more intermediate compositions. Xenon isotope data indicate that there was little recycling of volatiles before 3 Ga. Evidence for the juxtaposition of continental fragments back to ~2.8 Ga, each with disparate histories highlights that fragments of crust were moving around laterally on the Earth. The reduction in crustal growth at ~ 3 Ga is attributed to an increase in the rates at which differentiated continental crust was destroyed, and that coupled with the other changes at the end of the Archaean are taken to reflect the onset of plate tectonics as the dominant global regime.
Collapse
Affiliation(s)
- Chris Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Peter A. Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Bruno Dhuime
- Géosciences Montpellier, CNRS & Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
5
|
Ferreira ACD, Dantas EL, Fuck RA, Nedel IM. Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil. Sci Rep 2020; 10:7855. [PMID: 32398674 PMCID: PMC7217907 DOI: 10.1038/s41598-020-64688-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/20/2020] [Indexed: 11/24/2022] Open
Abstract
New systematic Nd isotope and U-Pb geochronology data were applied to Precambrian rocks of northeastern Brazil to produce a crustal-age distribution map for a small basement inlier (1,500 km2). The results support episodic crustal growth with five short periods of crustal formation at ca. 2.9 Ga, 2.65 Ga, 2.25 Ga, 2.0 Ga, and 0.6 Ga. Based on the frequency histogram of U-Pb zircon ages and Nd isotopic data, we suggest that about 60% of the continental crust was formed during the Archean between 2.9 Ga and 2.65 Ga. The remaining 40% of crust was generated during the Rhyacian to Neoproterozoic (~2.0–0.6 Ga). This overall continental growth is manifested by accretionary processes that involved successive accretions surrounding an older core, becoming younger toward the margin. Strikingly, this repetitive history of terrane accretion show a change from lithospheric peeling dominated accretionary setting during the late Archean to a more, modern-day akin style of arc-accretion during the Proterozoic. Similar tectonic processes are observed only in large continental areas (>1,000,000 km2) as in the North American continent basement and in the Amazonian Craton.
Collapse
Affiliation(s)
| | - Elton L Dantas
- Instituto de Geociências, Universidade de Brasília (UnB), 70910-900, Brasília, DF, Brazil
| | - Reinhardt A Fuck
- Instituto de Geociências, Universidade de Brasília (UnB), 70910-900, Brasília, DF, Brazil
| | - Ingrid M Nedel
- Instituto de Geociências, Universidade de Brasília (UnB), 70910-900, Brasília, DF, Brazil
| |
Collapse
|
6
|
No evidence for high-pressure melting of Earth's crust in the Archean. Nat Commun 2019; 10:5559. [PMID: 31804503 PMCID: PMC6895241 DOI: 10.1038/s41467-019-13547-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/23/2019] [Indexed: 11/11/2022] Open
Abstract
Much of the present-day volume of Earth’s continental crust had formed by the end of the Archean Eon, 2.5 billion years ago, through the conversion of basaltic (mafic) crust into sodic granite of tonalite, trondhjemite and granodiorite (TTG) composition. Distinctive chemical signatures in a small proportion of these rocks, the so-called high-pressure TTG, are interpreted to indicate partial melting of hydrated crust at pressures above 1.5 GPa (>50 km depth), pressures typically not reached in post-Archean continental crust. These interpretations significantly influence views on early crustal evolution and the onset of plate tectonics. Here we show that high-pressure TTG did not form through melting of crust, but through fractionation of melts derived from metasomatically enriched lithospheric mantle. Although the remaining, and dominant, group of Archean TTG did form through melting of hydrated mafic crust, there is no evidence that this occurred at depths significantly greater than the ~40 km average thickness of modern continental crust. Some of Earth’s earliest continental crust has been previously inferred to have formed from partial melting of hydrated mafic crust at pressures above 1.5 GPa (more than 50 km deep), pressures typically not reached in post-Archean continental crust. Here, the authors show that such high pressure signatures can result from melting of mantle sources rather than melting of crust, and they suggest there is a lack of evidence that Earth’s earliest crust melted at depths significantly below 40 km.
Collapse
|
7
|
Lin CH, Lane HY. The Role of N-Methyl-D-Aspartate Receptor Neurotransmission and Precision Medicine in Behavioral and Psychological Symptoms of Dementia. Front Pharmacol 2019; 10:540. [PMID: 31191302 PMCID: PMC6539199 DOI: 10.3389/fphar.2019.00540] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
While the world’s population is aging, the prevalence of dementia and the associated behavioral and psychological symptoms of dementia (BPSD) rises rapidly. BPSD are associated with worsening of cognitive function and poorer prognosis. No pharmacological treatment has been approved to be beneficial for BPSD to date. Dysfunction of the N-methyl-D-aspartate receptor (NMDAR)-related neurotransmission leads to cognitive impairment and behavioral changes, both of which are core symptoms of BPSD. Memantine, an NMDAR partial antagonist, is used to treat moderate to severe Alzheimer’s disease (AD). On the other hand, a D-amino acid oxidase inhibitor improved early-phase AD. Whether to enhance or to attenuate the NMDAR may depend on the phases of dementia. It will be valuable to develop biomarkers indicating the activity of NMDAR, particularly in BPSD. In addition, recent reports suggest that gender difference exists in the treatment of dementia. Selecting subpopulations of patients with BPSD who are prone to improvement with treatment would be important. We reviewed literatures regarding the treatment of BPSD, focusing on the NMDAR-related modulation and precision medicine. Future studies examining the NMDAR modulators with the aid of potential biomarkers to tailor the treatment for individualized patients with BPSD are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Hawkesworth CJ, Brown M. Earth dynamics and the development of plate tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2018.0228. [PMID: 30275168 PMCID: PMC6189552 DOI: 10.1098/rsta.2018.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 05/08/2023]
Affiliation(s)
- Chris J Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Michael Brown
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Cawood PA, Hawkesworth CJ, Pisarevsky SA, Dhuime B, Capitanio FA, Nebel O. Geological archive of the onset of plate tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0405. [PMID: 30275157 PMCID: PMC6189553 DOI: 10.1098/rsta.2017.0405] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 05/02/2023]
Abstract
Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of sea-floor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780-2710 Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700-2440 Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Peter A Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
- Department of Earth Sciences, University of St Andrews, St Andrews, Fife KY16 9AL, UK
| | - Chris J Hawkesworth
- Department of Earth Sciences, University of St Andrews, St Andrews, Fife KY16 9AL, UK
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Sergei A Pisarevsky
- ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Bruno Dhuime
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
- CNRS-UMR 5243, Géosciences Montpellier, Université de Montpellier, Montpellier, France
| | - Fabio A Capitanio
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Oliver Nebel
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|