1
|
Chen X, Li C, Li B, Ying Y, Ye S, Zakharov DN, Hwang S, Fang J, Wang G, Hu YJ, Zhou G. Surface Self-Diffusion Induced Sintering of Nanoparticles. ACS NANO 2024; 18:31160-31173. [PMID: 39485068 DOI: 10.1021/acsnano.4c09056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the critical role of sintering phenomena in constraining the long-term durability of nanosized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes.
Collapse
Affiliation(s)
- Xiaobo Chen
- Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yubin Ying
- Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Shuonan Ye
- Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yong-Jie Hu
- Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Guangwen Zhou
- Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
2
|
Boyes ED, Gai PL. Visualizing Dynamic Single Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314121. [PMID: 38757873 DOI: 10.1002/adma.202314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Many industrial chemical processes, including for producing fuels, foods, pharmaceuticals, chemicals and environmental controls, employ heterogeneous solid state catalysts at elevated temperatures in gas or liquid environments. Dynamic reactions at the atomic level play a critical role in catalyst stability and functionality. In situ visualization and analysis of atomic-scale processes in real time under controlled reaction environments can provide important insights into practical frameworks to improve catalytic processes and materials. This review focuses on innovative real time in situ electron microscopy (EM) methods, including recent progress in analytical in situ environmental (scanning) transmission EM (E(STEM), incorporating environmental scanning TEM (ESTEM) and environmental transmission EM (ETEM), with single atom resolution for visualizing and analysing dynamic single atom catalysis under controlled flowing gas reaction environments. ESTEM studies of single atom dynamics of reactions, and of sintering deactivation, contribute to a better-informed understanding of the yield and stability of catalyst operations. Advances in in situ technologies, including gas and liquid sample holders, nanotomography, and higher voltages, as well as challenges and opportunities in tracking reacting atoms, are highlighted. The findings show that the understanding and application of fundamental processes in catalysis can be improved, with valuable economic, environmental, and societal benefits.
Collapse
Affiliation(s)
- Edward D Boyes
- The York Nanocentre, Department of Physics, University of York, York, YO10 5DD, UK
| | - Pratibha L Gai
- The York Nanocentre, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
3
|
San Gabriel ML, Qiu C, Yu D, Yaguchi T, Howe JY. Simultaneous secondary electron microscopy in the scanning transmission electron microscope with applications for in situ studies. Microscopy (Oxf) 2024; 73:169-183. [PMID: 38334743 DOI: 10.1093/jmicro/dfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/09/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Scanning/transmission electron microscopy (STEM) is a powerful characterization tool for a wide range of materials. Over the years, STEMs have been extensively used for in situ studies of structural evolution and dynamic processes. A limited number of STEM instruments are equipped with a secondary electron (SE) detector in addition to the conventional transmitted electron detectors, i.e. the bright-field (BF) and annular dark-field (ADF) detectors. Such instruments are capable of simultaneous BF-STEM, ADF-STEM and SE-STEM imaging. These methods can reveal the 'bulk' information from BF and ADF signals and the surface information from SE signals for materials <200 nm thick. This review first summarizes the field of in situ STEM research, followed by the generation of SE signals, SE-STEM instrumentation and applications of SE-STEM analysis. Combining with various in situ heating, gas reaction and mechanical testing stages based on microelectromechanical systems (MEMS), we show that simultaneous SE-STEM imaging has found applications in studying the dynamics and transient phenomena of surface reconstructions, exsolution of catalysts, lunar and planetary materials and mechanical properties of 2D thin films. Finally, we provide an outlook on the potential advancements in SE-STEM from the perspective of sample-related factors, instrument-related factors and data acquisition and processing.
Collapse
Affiliation(s)
- Mia L San Gabriel
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON M5S 3E4,Canada
| | - Chenyue Qiu
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON M5S 3E4,Canada
| | - Dian Yu
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON M5S 3E4,Canada
| | - Toshie Yaguchi
- Electron Microscope Systems Design Department, Hitachi High-Tech Corporation, 552-53 shinko-cho, Hitachinaka-shi, Ibaraki-ken 312-8504, Japan
| | - Jane Y Howe
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, ON M5S 3E4,Canada
- Department of Chemical Engineering, University of Toronto, 200 College St, Toronto, ON M5T 3E5, Canada
| |
Collapse
|
4
|
Besenbacher F, Lauritsen J. Applications of high-resolution scanning probe microscopy in hydroprocessing catalysis studies. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Gai PL, Boyes ED, Brydson R, Catlow R. Dynamic in situ microscopy relating structure and function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190596. [PMID: 33100158 PMCID: PMC7661280 DOI: 10.1098/rsta.2019.0596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Pratibha L. Gai
- Department of Chemistry, University of York, York, UK
- Department of Physics, University of York, York, UK
| | | | - Rik Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Richard Catlow
- Department of Chemistry, University College London, London, UK
| |
Collapse
|