1
|
Tsvetkova M, Yasseri T, Pescetelli N, Werner T. A new sociology of humans and machines. Nat Hum Behav 2024; 8:1864-1876. [PMID: 39438685 DOI: 10.1038/s41562-024-02001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
From fake social media accounts and generative artificial intelligence chatbots to trading algorithms and self-driving vehicles, robots, bots and algorithms are proliferating and permeating our communication channels, social interactions, economic transactions and transportation arteries. Networks of multiple interdependent and interacting humans and intelligent machines constitute complex social systems for which the collective outcomes cannot be deduced from either human or machine behaviour alone. Under this paradigm, we review recent research and identify general dynamics and patterns in situations of competition, coordination, cooperation, contagion and collective decision-making, with context-rich examples from high-frequency trading markets, a social media platform, an open collaboration community and a discussion forum. To ensure more robust and resilient human-machine communities, we require a new sociology of humans and machines. Researchers should study these communities using complex system methods; engineers should explicitly design artificial intelligence for human-machine and machine-machine interactions; and regulators should govern the ecological diversity and social co-development of humans and machines.
Collapse
Affiliation(s)
- Milena Tsvetkova
- Department of Methodology, London School of Economics and Political Science, London, UK.
| | - Taha Yasseri
- School of Sociology, University College Dublin, Dublin, Ireland
- Geary Institute for Public Policy, University College Dublin, Dublin, Ireland
- School of Social Sciences and Philosophy, Trinity College Dublin, Dublin, Ireland
| | - Niccolo Pescetelli
- Collective Intelligence Lab, New Jersey Institute of Technology, Newark, NJ, USA
- The London Interdisciplinary School, London, UK
| | - Tobias Werner
- Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
2
|
Ueshima A, Jones MI, Christakis NA. Simple autonomous agents can enhance creative semantic discovery by human groups. Nat Commun 2024; 15:5212. [PMID: 38890368 PMCID: PMC11189566 DOI: 10.1038/s41467-024-49528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Innovation is challenging, and theory and experiments indicate that groups may be better able to identify and preserve innovations than individuals. But innovation within groups faces its own challenges, including groupthink and truncated diffusion. We performed experiments involving a game in which people search for ideas in various conditions: alone, in networked social groups, or in networked groups featuring autonomous agents (bots). The objective was to search a semantic space of 20,000 nouns with defined similarities for an arbitrary noun with the highest point value. Participants (N = 1875) were embedded in networks (n = 125) of 15 nodes to which we sometimes added 2 bots. The bots had 3 possible strategies: they shared a random noun generated by their immediate neighbors, or a noun most similar from among those identified, or a noun least similar. We first confirm that groups are better able to explore a semantic space than isolated individuals. Then we show that when bots that share the most similar noun operate in groups facing a semantic space that is relatively easy to navigate, group performance is superior. Simple autonomous agents with interpretable behavior can affect the capacity for creative discovery of human groups.
Collapse
Affiliation(s)
- Atsushi Ueshima
- Yale Institute for Network Science, Yale University, New Haven, CT, USA
- Department of Sociology, Yale University, New Haven, CT, USA
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Human Sciences, Faculty of Letters, Keio University, Tokyo, Japan
| | - Matthew I Jones
- Yale Institute for Network Science, Yale University, New Haven, CT, USA
- Department of Sociology, Yale University, New Haven, CT, USA
- Sunwater Institute, North Bethesda, MD, USA
| | - Nicholas A Christakis
- Yale Institute for Network Science, Yale University, New Haven, CT, USA.
- Department of Sociology, Yale University, New Haven, CT, USA.
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Brinkmann L, Baumann F, Bonnefon JF, Derex M, Müller TF, Nussberger AM, Czaplicka A, Acerbi A, Griffiths TL, Henrich J, Leibo JZ, McElreath R, Oudeyer PY, Stray J, Rahwan I. Machine culture. Nat Hum Behav 2023; 7:1855-1868. [PMID: 37985914 DOI: 10.1038/s41562-023-01742-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The ability of humans to create and disseminate culture is often credited as the single most important factor of our success as a species. In this Perspective, we explore the notion of 'machine culture', culture mediated or generated by machines. We argue that intelligent machines simultaneously transform the cultural evolutionary processes of variation, transmission and selection. Recommender algorithms are altering social learning dynamics. Chatbots are forming a new mode of cultural transmission, serving as cultural models. Furthermore, intelligent machines are evolving as contributors in generating cultural traits-from game strategies and visual art to scientific results. We provide a conceptual framework for studying the present and anticipated future impact of machines on cultural evolution, and present a research agenda for the study of machine culture.
Collapse
Affiliation(s)
- Levin Brinkmann
- Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany.
| | - Fabian Baumann
- Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Maxime Derex
- Toulouse School of Economics, Toulouse, France
- Institute for Advanced Study in Toulouse, Toulouse, France
| | - Thomas F Müller
- Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
| | - Anne-Marie Nussberger
- Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
| | - Agnieszka Czaplicka
- Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
| | - Alberto Acerbi
- Department of Sociology and Social Research, University of Trento, Trento, Italy
| | - Thomas L Griffiths
- Department of Psychology and Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Richard McElreath
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Jonathan Stray
- Center for Human-Compatible Artificial Intelligence, University of California, Berkeley, Berkeley, CA, USA
| | - Iyad Rahwan
- Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
4
|
Shin M, Kim J, van Opheusden B, Griffiths TL. Superhuman artificial intelligence can improve human decision-making by increasing novelty. Proc Natl Acad Sci U S A 2023; 120:e2214840120. [PMID: 36913582 PMCID: PMC10041097 DOI: 10.1073/pnas.2214840120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/19/2022] [Indexed: 03/14/2023] Open
Abstract
How will superhuman artificial intelligence (AI) affect human decision-making? And what will be the mechanisms behind this effect? We address these questions in a domain where AI already exceeds human performance, analyzing more than 5.8 million move decisions made by professional Go players over the past 71 y (1950 to 2021). To address the first question, we use a superhuman AI program to estimate the quality of human decisions across time, generating 58 billion counterfactual game patterns and comparing the win rates of actual human decisions with those of counterfactual AI decisions. We find that humans began to make significantly better decisions following the advent of superhuman AI. We then examine human players' strategies across time and find that novel decisions (i.e., previously unobserved moves) occurred more frequently and became associated with higher decision quality after the advent of superhuman AI. Our findings suggest that the development of superhuman AI programs may have prompted human players to break away from traditional strategies and induced them to explore novel moves, which in turn may have improved their decision-making.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Marketing, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Jin Kim
- Department of Marketing, Yale School of Management, Yale University, New Haven, CT06511
- Advanced Institute of Business, Tongji University, Shanghai, China
| | | | - Thomas L. Griffiths
- Department of Psychology, Princeton University, Princeton, NJ08540
- Department of Computer Science, Princeton University, Princeton, NJ08540
| |
Collapse
|
5
|
Elephant motorbikes and too many neckties: epistemic spatialization as a framework for investigating patterns of bias in convolutional neural networks. AI & SOCIETY 2022. [DOI: 10.1007/s00146-022-01542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Artime O, De Domenico M. From the origin of life to pandemics: emergent phenomena in complex systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200410. [PMID: 35599559 PMCID: PMC9125231 DOI: 10.1098/rsta.2020.0410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
When a large number of similar entities interact among each other and with their environment at a low scale, unexpected outcomes at higher spatio-temporal scales might spontaneously arise. This non-trivial phenomenon, known as emergence, characterizes a broad range of distinct complex systems-from physical to biological and social-and is often related to collective behaviour. It is ubiquitous, from non-living entities such as oscillators that under specific conditions synchronize, to living ones, such as birds flocking or fish schooling. Despite the ample phenomenological evidence of the existence of systems' emergent properties, central theoretical questions to the study of emergence remain unanswered, such as the lack of a widely accepted, rigorous definition of the phenomenon or the identification of the essential physical conditions that favour emergence. We offer here a general overview of the phenomenon of emergence and sketch current and future challenges on the topic. Our short review also serves as an introduction to the theme issue Emergent phenomena in complex physical and socio-technical systems: from cells to societies, where we provide a synthesis of the contents tackled in the issue and outline how they relate to these challenges, spanning from current advances in our understanding on the origin of life to the large-scale propagation of infectious diseases. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Oriol Artime
- Fondazione Bruno Kessler, Via Sommarive 18, Povo, TN 38123, Italy
| | - Manlio De Domenico
- Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Padova, Veneto, Italy
| |
Collapse
|