1
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
2
|
Liu Z, Xia H, Chen A. Impaired brain ability of older adults to transit and persist to latent states with well-organized structures at wakeful rest. GeroScience 2024:10.1007/s11357-024-01366-y. [PMID: 39361232 DOI: 10.1007/s11357-024-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
The intrinsic brain functional network organization continuously changes with aging. By integrating spatial and temporal information, the process of how brain networks temporally reconfigure and remain well-organized spatial structure largely reflects the brain function, thereby holds the potential to capture its age-related declines. In this study, we examined the spatiotemporal brain dynamics from resting-state functional Magnetic Resonance Imaging (fMRI) data of healthy young and older adults using a Hidden Markov Model (HMM). Six brain states were generated by HMM, with the young group showing higher fractional occupancy and mean dwell time in states 1, 3, and 4 (SY1, SY2 and SY3), and the older group in states 2, 5, and 6 (SO1, SO2 and SO3). Importantly, comparisons of transition probabilities revealed that the older group showed a reduced brain ability to transition into states dominated by the younger group, as well as a diminished capacity to persist in them. Moreover, graph analysis revealed that these young-specific states exhibited higher modularity and k-coreness. Collectively, these findings suggested that the older group showed impaired brain ability of both transition into and sustain well spatially organized states. This emphasized that the temporal changes in brain state organization, rather than its static mode, could be a key biomarker for detecting age-related functional decline. These insights may pave the way for targeted interventions aimed at mitigating cognitive decline in the aging population.
Collapse
Affiliation(s)
- Zijin Liu
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200082, China
| | - Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400700, China
| | - Antao Chen
- Faculty of Psychology, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
3
|
Gao C, Huang H, Zhan J, Li W, Li Y, Li J, Zhou J, Wang Y, Jiang Z, Chen W, Zhu Y, Zhuo Y, Wu K. Adaptive Changes in Neurovascular Properties With Binocular Accommodation Functions in Myopic Participants by 3D Visual Training: An EEG and fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2749-2758. [PMID: 39074027 DOI: 10.1109/tnsre.2024.3434492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Although three-dimensional visual training (3DVT) has been used for myopia intervention, its neural mechanisms remain largely unknown. In this study, visual function was examined before and after 3DVT, while resting-state EEG-fNIRS signals were recorded from 38 myopic participants. A graph theoretical analysis was applied to compute the neurovascular properties, including static brain networks (SBNs), dynamic brain networks (DBNs), and dynamic neurovascular coupling (DNC). Correlations between the changes in neurovascular properties and the changes in visual functions were calculated. After 3DVT, the local efficiency and node efficiency in the frontal lobes increased in the SBNs constructed from EEG δ -band; the global efficiency and node efficiency in the frontal-parietal lobes decreased in the DBNs variability constructed from EEG δ -band. For the DNC constructed with EEG α -band and oxyhemoglobin (HbO), the local efficiency decreased, for EEG α -band and deoxyhemoglobin (HbR), the node efficiency in the frontal-occipital lobes decreased. For the SBNs constructed from HbO, the functional connectivity (FC) between the frontal-occipital lobes increased. The DNC constructed between the FC of the frontal-parietal lobes from EEG β -band and the FC of the frontal-occipital lobes from HbO increased, and between the FC of the frontal-occipital lobes from EEG β -band and the FC of the inter-frontal lobes from HbR increased. The neurovascular properties were significantly correlated with the amplitude of accommodation and accommodative facility. The result indicated the positive effects of 3DVT on myopic participants, including improved efficiency of brain networks, increased FC of SBNs and DNC, and enhanced binocular accommodation functions.
Collapse
|
4
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Vohryzek J, Luppi AI, Atasoy S, Deco G, Carhart-Harris RL, Timmermann C, Kringelbach ML. Time-resolved coupling between connectome harmonics and subjective experience under the psychedelic DMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596410. [PMID: 38853985 PMCID: PMC11160714 DOI: 10.1101/2024.05.30.596410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Exploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain function propagates across the structural connectome - a network of white matter pathways linking different regions. To comprehensively grasp the effects of psychedelic compounds on brain function, we used a theoretically rigorous framework known as connectome harmonic decomposition. This framework provides a robust method to characterize how brain function intricately depends on the organized network structure of the human connectome. We show that the connectome harmonic repertoire under DMT is reshaped in line with other reported psychedelic compounds - psilocybin, LSD and ketamine. Furthermore, we show that the repertoire entropy of connectome harmonics increases under DMT, as with those other psychedelics. Importantly, we demonstrate for the first time that measures of energy spectrum difference and repertoire entropy of connectome harmonics indexes the intensity of subjective experience of the participants in a time-resolved manner reflecting close coupling between connectome harmonics and subjective experience.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrea I. Luppi
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- St John’s College, University of Cambridge, Cambridge, United Kingdom
- Division of Information Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Robin L. Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco, USA
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Vohryzek J, Cabral J, Timmermann C, Atasoy S, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. The flattening of spacetime hierarchy of the N,N-dimethyltryptamine brain state is characterized by harmonic decomposition of spacetime (HADES) framework. Natl Sci Rev 2024; 11:nwae124. [PMID: 38778818 PMCID: PMC11110867 DOI: 10.1093/nsr/nwae124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco 94143, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
7
|
Vohryzek J, Cabral J, Lord LD, Fernandes HM, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. Brain dynamics predictive of response to psilocybin for treatment-resistant depression. Brain Commun 2024; 6:fcae049. [PMID: 38515439 PMCID: PMC10957168 DOI: 10.1093/braincomms/fcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Portugal
| | - Louis-David Lord
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Ruffini G, Lopez-Sola E, Vohryzek J, Sanchez-Todo R. Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics Perspective. ENTROPY (BASEL, SWITZERLAND) 2024; 26:90. [PMID: 38275498 PMCID: PMC11154528 DOI: 10.3390/e26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| |
Collapse
|
9
|
Kardan O, Stier AJ, Layden EA, Choe KW, Lyu M, Zhang X, Beilock SL, Rosenberg MD, Berman MG. Improvements in task performance after practice are associated with scale-free dynamics of brain activity. Netw Neurosci 2023; 7:1129-1152. [PMID: 37781143 PMCID: PMC10473260 DOI: 10.1162/netn_a_00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/11/2023] [Indexed: 10/03/2023] Open
Abstract
Although practicing a task generally benefits later performance on that same task, there are individual differences in practice effects. One avenue to model such differences comes from research showing that brain networks extract functional advantages from operating in the vicinity of criticality, a state in which brain network activity is more scale-free. We hypothesized that higher scale-free signal from fMRI data, measured with the Hurst exponent (H), indicates closer proximity to critical states. We tested whether individuals with higher H during repeated task performance would show greater practice effects. In Study 1, participants performed a dual-n-back task (DNB) twice during MRI (n = 56). In Study 2, we used two runs of n-back task (NBK) data from the Human Connectome Project sample (n = 599). In Study 3, participants performed a word completion task (CAST) across six runs (n = 44). In all three studies, multivariate analysis was used to test whether higher H was related to greater practice-related performance improvement. Supporting our hypothesis, we found patterns of higher H that reliably correlated with greater performance improvement across participants in all three studies. However, the predictive brain regions were distinct, suggesting that the specific spatial H↑ patterns are not task-general.
Collapse
Affiliation(s)
- Omid Kardan
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Stier
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Elliot A. Layden
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Kyoung Whan Choe
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Muxuan Lyu
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Department of Management and Marketing, The Hong Kong Polytechnic University, Hong Kong
| | - Xihan Zhang
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Sian L. Beilock
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Barnard College, Columbia University, New York, NY, USA
| | | | - Marc G. Berman
- Department of Psychology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Yurchenko SB. Is information the other face of causation in biological systems? Biosystems 2023; 229:104925. [PMID: 37182834 DOI: 10.1016/j.biosystems.2023.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Is information the other face of causation? This issue cannot be clarified without discussing how these both are related to physical laws, logic, computation, networks, bio-signaling, and the mind-body problem. The relation between information and causation is also intrinsically linked to many other concepts in complex systems theory such as emergence, self-organization, synergy, criticality, and hierarchy, which in turn involve various notions such as observer-dependence, dimensionality reduction, and especially downward causation. A canonical example proposed for downward causation is the collective behavior of the whole system at a macroscale that may affect the behavior of each its member at a microscale. In neuroscience, downward causation is suggested as a strong candidate to account for mental causation (free will). However, this would be possible only on the condition that information might have causal power. After introducing the Causal Equivalence Principle expanding the relativity principle for coarse-grained and fine-grained linear causal chains, and a set-theoretical definition of multiscale nested hierarchy composed of modular ⊂-chains, it is shown that downward causation can be spurious. It emerges only in the eyes of an observer, though, due to information that could not be obtained by "looking" exclusively at the behavior of a system at a microscale. On the other hand, since biological systems are hierarchically organized, this information gain is indicative of how information can be a function of scale in these systems and a prerequisite for scale-dependent emergence of cognition and consciousness in neural networks.
Collapse
Affiliation(s)
- Sergey B Yurchenko
- Brain and Consciousness Independent Research Center, Andijan, Uzbekistan.
| |
Collapse
|
11
|
Zheng Y, Tang S, Zheng H, Wang X, Liu L, Yang Y, Zhen Y, Zheng Z. Noise improves the association between effects of local stimulation and structural degree of brain networks. PLoS Comput Biol 2023; 19:e1010866. [PMID: 37167331 PMCID: PMC10205011 DOI: 10.1371/journal.pcbi.1010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Stimulation to local areas remarkably affects brain activity patterns, which can be exploited to investigate neural bases of cognitive function and modify pathological brain statuses. There has been growing interest in exploring the fundamental action mechanisms of local stimulation. Nevertheless, how noise amplitude, an essential element in neural dynamics, influences stimulation-induced brain states remains unknown. Here, we systematically examine the effects of local stimulation by using a large-scale biophysical model under different combinations of noise amplitudes and stimulation sites. We demonstrate that noise amplitude nonlinearly and heterogeneously tunes the stimulation effects from both regional and network perspectives. Furthermore, by incorporating the role of the anatomical network, we show that the peak frequencies of unstimulated areas at different stimulation sites averaged across noise amplitudes are highly positively related to structural connectivity. Crucially, the association between the overall changes in functional connectivity as well as the alterations in the constraints imposed by structural connectivity with the structural degree of stimulation sites is nonmonotonically influenced by the noise amplitude, with the association increasing in specific noise amplitude ranges. Moreover, the impacts of local stimulation of cognitive systems depend on the complex interplay between the noise amplitude and average structural degree. Overall, this work provides theoretical insights into how noise amplitude and network structure jointly modulate brain dynamics during stimulation and introduces possibilities for better predicting and controlling stimulation outcomes.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing (BABEC), Beijing, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Gast R, Solla SA, Kennedy A. Macroscopic dynamics of neural networks with heterogeneous spiking thresholds. Phys Rev E 2023; 107:024306. [PMID: 36932598 DOI: 10.1103/physreve.107.024306] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Mean-field theory links the physiological properties of individual neurons to the emergent dynamics of neural population activity. These models provide an essential tool for studying brain function at different scales; however, for their application to neural populations on large scale, they need to account for differences between distinct neuron types. The Izhikevich single neuron model can account for a broad range of different neuron types and spiking patterns, thus rendering it an optimal candidate for a mean-field theoretic treatment of brain dynamics in heterogeneous networks. Here we derive the mean-field equations for networks of all-to-all coupled Izhikevich neurons with heterogeneous spiking thresholds. Using methods from bifurcation theory, we examine the conditions under which the mean-field theory accurately predicts the dynamics of the Izhikevich neuron network. To this end, we focus on three important features of the Izhikevich model that are subject here to simplifying assumptions: (i) spike-frequency adaptation, (ii) the spike reset conditions, and (iii) the distribution of single-cell spike thresholds across neurons. Our results indicate that, while the mean-field model is not an exact model of the Izhikevich network dynamics, it faithfully captures its different dynamic regimes and phase transitions. We thus present a mean-field model that can represent different neuron types and spiking dynamics. The model comprises biophysical state variables and parameters, incorporates realistic spike resetting conditions, and accounts for heterogeneity in neural spiking thresholds. These features allow for a broad applicability of the model as well as for a direct comparison to experimental data.
Collapse
Affiliation(s)
- Richard Gast
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Sara A Solla
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ann Kennedy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
13
|
Sporns O. The complex brain: connectivity, dynamics, information. Trends Cogn Sci 2022; 26:1066-1067. [PMID: 36207260 DOI: 10.1016/j.tics.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
Most would agree, the brain is complex. But, beyond metaphor, does the brain's complexity demand a paradigm shift in how we study its structure and function? I argue that complexity manifests in three domains - connectivity, dynamics, and information - and that unlocking their interactions will greatly advance our understanding of brain and cognition.
Collapse
Affiliation(s)
- Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
Yurchenko SB. From the origins to the stream of consciousness and its neural correlates. Front Integr Neurosci 2022; 16:928978. [PMID: 36407293 PMCID: PMC9672924 DOI: 10.3389/fnint.2022.928978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 09/22/2023] Open
Abstract
There are now dozens of very different theories of consciousness, each somehow contributing to our understanding of its nature. The science of consciousness needs therefore not new theories but a general framework integrating insights from those, yet not making it a still-born "Frankenstein" theory. First, the framework must operate explicitly on the stream of consciousness, not on its static description. Second, this dynamical account must also be put on the evolutionary timeline to explain the origins of consciousness. The Cognitive Evolution Theory (CET), outlined here, proposes such a framework. This starts with the assumption that brains have primarily evolved as volitional subsystems of organisms, inherited from primitive (fast and random) reflexes of simplest neural networks, only then resembling error-minimizing prediction machines. CET adopts the tools of critical dynamics to account for metastability, scale-free avalanches, and self-organization which are all intrinsic to brain dynamics. This formalizes the stream of consciousness as a discrete (transitive, irreflexive) chain of momentary states derived from critical brain dynamics at points of phase transitions and mapped then onto a state space as neural correlates of a particular conscious state. The continuous/discrete dichotomy appears naturally between the brain dynamics at the causal level and conscious states at the phenomenal level, each volitionally triggered from arousal centers of the brainstem and cognitively modulated by thalamocortical systems. Their objective observables can be entropy-based complexity measures, reflecting the transient level or quantity of consciousness at that moment.
Collapse
|
15
|
Omidvarnia A, Liégeois R, Amico E, Preti MG, Zalesky A, Van De Ville D. On the Spatial Distribution of Temporal Complexity in Resting State and Task Functional MRI. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1148. [PMID: 36010812 PMCID: PMC9407401 DOI: 10.3390/e24081148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Measuring the temporal complexity of functional MRI (fMRI) time series is one approach to assess how brain activity changes over time. In fact, hemodynamic response of the brain is known to exhibit critical behaviour at the edge between order and disorder. In this study, we aimed to revisit the spatial distribution of temporal complexity in resting state and task fMRI of 100 unrelated subjects from the Human Connectome Project (HCP). First, we compared two common choices of complexity measures, i.e., Hurst exponent and multiscale entropy, and observed a high spatial similarity between them. Second, we considered four tasks in the HCP dataset (Language, Motor, Social, and Working Memory) and found high task-specific complexity, even when the task design was regressed out. For the significance thresholding of brain complexity maps, we used a statistical framework based on graph signal processing that incorporates the structural connectome to develop the null distributions of fMRI complexity. The results suggest that the frontoparietal, dorsal attention, visual, and default mode networks represent stronger complex behaviour than the rest of the brain, irrespective of the task engagement. In sum, the findings support the hypothesis of fMRI temporal complexity as a marker of cognition.
Collapse
Affiliation(s)
- Amir Omidvarnia
- Applied Machine Learning Group, Institute of Neuroscience and Medicine, Forschungszentrum Juelich, 52428 Juelich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Raphaël Liégeois
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Enrico Amico
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
- CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
16
|
Artime O, De Domenico M. From the origin of life to pandemics: emergent phenomena in complex systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200410. [PMID: 35599559 PMCID: PMC9125231 DOI: 10.1098/rsta.2020.0410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
When a large number of similar entities interact among each other and with their environment at a low scale, unexpected outcomes at higher spatio-temporal scales might spontaneously arise. This non-trivial phenomenon, known as emergence, characterizes a broad range of distinct complex systems-from physical to biological and social-and is often related to collective behaviour. It is ubiquitous, from non-living entities such as oscillators that under specific conditions synchronize, to living ones, such as birds flocking or fish schooling. Despite the ample phenomenological evidence of the existence of systems' emergent properties, central theoretical questions to the study of emergence remain unanswered, such as the lack of a widely accepted, rigorous definition of the phenomenon or the identification of the essential physical conditions that favour emergence. We offer here a general overview of the phenomenon of emergence and sketch current and future challenges on the topic. Our short review also serves as an introduction to the theme issue Emergent phenomena in complex physical and socio-technical systems: from cells to societies, where we provide a synthesis of the contents tackled in the issue and outline how they relate to these challenges, spanning from current advances in our understanding on the origin of life to the large-scale propagation of infectious diseases. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Oriol Artime
- Fondazione Bruno Kessler, Via Sommarive 18, Povo, TN 38123, Italy
| | - Manlio De Domenico
- Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Padova, Veneto, Italy
| |
Collapse
|