Hill K, Hemmler R, Kovermann P, Calenberg M, Kreimer G, Wagner R. A Ca(2+)- and voltage-modulated flagellar ion channel is a component of the mechanoshock response in the unicellular green alga Spermatozopsis similis.
BIOCHIMICA ET BIOPHYSICA ACTA 2000;
1466:187-204. [PMID:
10825442 DOI:
10.1016/s0005-2736(00)00200-5]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In flagellate green algae, behavioral responses to photo- and mechanoshock are induced by different external stimuli within 10-15 ms. In the accompanying changes in flagella beat, Ca(2+) has important regulatory roles. Although the axonemal Ca(2+) responsive elements are well characterized, analyses of flagellar channels involved in Ca(2+) signalling as well as other ion channels at the single-channel level were not yet conducted in green algae. To gain a further understanding of these important signaling elements in movement responses, intact flagella of Spermatozopsis similis were isolated and characterized and the solubilized flagellar membrane proteins were reconstituted into liposomes. We observed three types of channel activity, two of which were weakly anion and cation-selective and in the high-conductance regime typical for porin-like solute channels. The dominating channel activity was a voltage dependent, rectifying, low conductance (Lambda=80 pS in 50 mM KCl) cation-selective channel modulated by, and highly permeable to, Ca(2+) ions (SFC1: Spermatozopsis flagellar cation channel 1). Depolarizations necessary to activate SFC1 probably only occur in vivo during avoidance reactions of this alga. Ca(2+)-activation of SFC1 points to a direct link to Ca(2+)-mediated signaling pathway(s) in the flagella. Both the response to mechanoshock and SFC1 activity were inhibited by Gd(3+) and Ba(2+), thus supporting our assumption that SFC1 represents a major flagellar ion channel involved in this green algal avoidance reaction.
Collapse