1
|
Yu T, Zheng F, He W, Muyldermans S, Wen Y. Single domain antibody: Development and application in biotechnology and biopharma. Immunol Rev 2024; 328:98-112. [PMID: 39166870 DOI: 10.1111/imr.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heavy-chain antibodies (HCAbs) are a unique type of antibodies devoid of light chains, and comprised of two heavy chains-only that recognize their cognate antigen by virtue of a single variable domain also referred to as VHH, single domain antibody (sdAb), or nanobody (Nb). These functional HCAbs, serendipitous discovered about three decades ago, are exclusively found in camelids, comprising dromedaries, camels, llamas, and vicugnas. Nanobodies have become an essential tool in biomedical research and medicine, both in diagnostics and therapeutics due to their beneficial properties: small size, high stability, strong antigen-binding affinity, low immunogenicity, low production cost, and straightforward engineering into more potent affinity reagents. The occurrence of HCAbs in camelids remains intriguing. It is believed to be an evolutionary adaptation, equipping camelids with a robust adaptive immune defense suitable to respond to the pressure from a pathogenic invasion necessitating a more profound antigen recognition and neutralization. This evolutionary innovation led to a simplified HCAb structure, possibly supported by genetic mutations and drift, allowing adaptive mutation and diversification in the heavy chain variable gene and constant gene regions. Beyond understanding their origins, the application of nanobodies has significantly advanced over the past 30 years. Alongside expanding laboratory research, there has been a rapid increase in patent application for nanobodies. The introduction of commercial nanobody drugs such as Cablivi, Nanozora, Envafolimab, and Carvykti has boosted confidence among in their potential. This review explores the evolutionary history of HCAbs, their ontogeny, and applications in biotechnology and pharmaceuticals, focusing on approved and ongoing medical research pipelines.
Collapse
Affiliation(s)
- Ting Yu
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
de Krijger I, Boersma V, Jacobs JJL. REV7: Jack of many trades. Trends Cell Biol 2021; 31:686-701. [PMID: 33962851 DOI: 10.1016/j.tcb.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The HORMA domain protein REV7, also known as MAD2L2, interacts with a variety of proteins and thereby contributes to the establishment of different complexes. With doing so, REV7 impacts a diverse range of cellular processes and gained increasing interest as more of its activities became uncovered. REV7 has important roles in translesion synthesis and mitotic progression, and acts as a central component in the recently discovered shieldin complex that operates in DNA double-strand break repair. Here we discuss the roles of REV7 in its various complexes, focusing on its activity in genome integrity maintenance. Moreover, we will describe current insights on REV7 structural features that allow it to be such a versatile protein.
Collapse
Affiliation(s)
- Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Ott JA, Ohta Y, Flajnik MF, Criscitiello MF. Lost structural and functional inter-relationships between Ig and TCR loci in mammals revealed in sharks. Immunogenetics 2021; 73:17-33. [PMID: 33449123 PMCID: PMC7909615 DOI: 10.1007/s00251-020-01183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Immunoglobulins and T cell receptors (TCR) have obvious structural similarities as well as similar immunogenetic diversification and selection mechanisms. Nevertheless, the two receptor systems and the loci that encode them are distinct in humans and classical murine models, and the gene segments comprising each repertoire are mutually exclusive. Additionally, while both B and T cells employ recombination-activating genes (RAG) for primary diversification, immunoglobulins are afforded a supplementary set of activation-induced cytidine deaminase (AID)-mediated diversification tools. As the oldest-emerging vertebrates sharing the same adaptive B and T cell receptor systems as humans, extant cartilaginous fishes allow a potential view of the ancestral immune system. In this review, we discuss breakthroughs we have made in studies of nurse shark (Ginglymostoma cirratum) T cell receptors demonstrating substantial integration of loci and diversification mechanisms in primordial B and T cell repertoires. We survey these findings in this shark model where they were first described, while noting corroborating examples in other vertebrate groups. We also consider other examples where the gnathostome common ancestry of the B and T cell receptor systems have allowed dovetailing of genomic elements and AID-based diversification approaches for the TCR. The cartilaginous fish seem to have retained this T/B cell plasticity to a greater extent than more derived vertebrate groups, but representatives in all vertebrate taxa except bony fish and placental mammals show such plasticity.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Vozdova M, Kubickova S, Pal K, Fröhlich J, Fictum P, Rubes J. Recurrent gene mutations detected in canine mast cell tumours by next generation sequencing. Vet Comp Oncol 2020; 18:509-518. [PMID: 31999054 DOI: 10.1111/vco.12572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Genetic causes of canine mast cell tumours (MCTs), except for mutations in the KIT gene detected in some MCTs, are generally unknown. We used whole exome sequencing to reveal mutation spectra in canine MCTs. We detected somatic mutations in 87 genes including 10 genes recognized as human cancer drivers. Besides KIT, 14 other genes were recurrently mutated. Subsequently, we performed next generation sequencing of a panel of 50 selected genes in additional MCT samples. In this group, the most frequently altered gene was GNB1 showing a recurrent dinucleotide substitution at position of Gly116 in 30% of the MCT samples (n = 6/20) and Ile80 substitution accompanied by a splice region mutation in one case. We extended the study by analysis of the above mentioned GNB1 regions in additional MCT samples by Sanger sequencing, and assessed the overall prevalence of GNB1 mutations to 17.3% (n = 14/81), which is similar to the prevalence of KIT alterations. Our results indicate that GNB1 mutations are probably involved in canine MCT pathogenesis in both cutaneous and subcutaneous MCT cases. As opposed to KIT alterations, the presence of GNB1 mutations did not negatively affect survival times, and our data even showed a trend towards positive prognosis. If our results are confirmed in a larger number of MCTs, an extension of molecular testing of canine MCTs by GNB1 analysis would help to refine the molecular stratification of MCTs, and become useful for targeted treatment strategies.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Fröhlich
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
5
|
Textor J, Fähnrich A, Meinhardt M, Tune C, Klein S, Pagel R, König P, Kalies K, Westermann J. Deep Sequencing Reveals Transient Segregation of T Cell Repertoires in Splenic T Cell Zones during an Immune Response. THE JOURNAL OF IMMUNOLOGY 2018; 201:350-358. [PMID: 29884700 DOI: 10.4049/jimmunol.1800091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022]
Abstract
Immunological differences between hosts, such as diverse TCR repertoires, are widely credited for reducing the risk of pathogen spread and adaptation in a population. Within-host immunological diversity might likewise be important for robust pathogen control, but to what extent naive TCR repertoires differ across different locations in the same host is unclear. T cell zones (TCZs) in secondary lymphoid organs provide secluded microenvironmental niches. By harboring distinct TCRs, such niches could enhance within-host immunological diversity. In contrast, rapid T cell migration is expected to dilute such diversity. In this study, we combined tissue microdissection and deep sequencing of the TCR β-chain to examine the extent to which TCR repertoires differ between TCZs in murine spleens. In the absence of Ag, we found little evidence for differences between TCZs of the same spleen. Yet, 3 d after immunization with sheep RBCs, we observed a >10-fold rise in the number of clones that appeared to localize to individual zones. Remarkably, these differences largely disappeared at 4 d after immunization, when hallmarks of an ongoing immune response were still observed. These data suggest that in the absence of Ag, any repertoire differences observed between TCZs of the same host can largely be attributed to random clone distribution. Upon Ag challenge, TCR repertoires in TCZs first segregate and then homogenize within days. Such "transient mosaic" dynamics could be an important barrier for pathogen adaptation and spread during an immune response.
Collapse
Affiliation(s)
- Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; and
| | - Anke Fähnrich
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Martin Meinhardt
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Cornelia Tune
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Sebastian Klein
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Rene Pagel
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Peter König
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Kathrin Kalies
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Jürgen Westermann
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
6
|
Caldwell RB, Braselmann H, Schoetz U, Heuer S, Scherthan H, Zitzelsberger H. Positive Cofactor 4 (PC4) is critical for DNA repair pathway re-routing in DT40 cells. Sci Rep 2016; 6:28890. [PMID: 27374870 PMCID: PMC4931448 DOI: 10.1038/srep28890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
PC4 is an abundant single-strand DNA binding protein that has been implicated in transcription and DNA repair. Here, we show that PC4 is involved in the cellular DNA damage response. To elucidate the role, we used the DT40 chicken B cell model, which produces clustered DNA lesions at Ig loci via the action of activation-induced deaminase. Our results help resolve key aspects of immunoglobulin diversification and suggest an essential role of PC4 in repair pathway choice. We show that PC4 ablation in gene conversion (GC)-active cells significantly disrupts GC but has little to no effect on targeted homologous recombination. In agreement, the global double-strand break repair response, as measured by γH2AX foci analysis, is unperturbed 16 hours post irradiation. In cells with the pseudo-genes removed (GC inactive), PC4 ablation reduced the overall mutation rate while simultaneously increasing the transversion mutation ratio. By tagging the N-terminus of PC4, gene conversion and somatic hypermutation are all but abolished even when native non-tagged PC4 is present, indicating a dominant negative effect. Our data point to a very early and deterministic role for PC4 in DNA repair pathway re-routing.
Collapse
Affiliation(s)
- Randolph B Caldwell
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Herbert Braselmann
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ulrike Schoetz
- Clinical Cooperation Group 'Personalized Radiotherapy of Head and Neck Cancer', Helmholtz Zentrum München, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany.,Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Steffen Heuer
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm. Neuherbergstr. 11, 80937 Muenchen, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH). Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy of Head and Neck Cancer', Helmholtz Zentrum München, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| |
Collapse
|
7
|
Magadan S, Sunyer OJ, Boudinot P. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. Results Probl Cell Differ 2015; 57:235-64. [PMID: 26537384 PMCID: PMC5124013 DOI: 10.1007/978-3-319-20819-0_10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.
Collapse
Affiliation(s)
- Susana Magadan
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | - Oriol J Sunyer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| |
Collapse
|
8
|
Daly J, Bebenek K, Watt DL, Richter K, Jiang C, Zhao ML, Ray M, McGregor WG, Kunkel TA, Diaz M. Altered Ig hypermutation pattern and frequency in complementary mouse models of DNA polymerase ζ activity. THE JOURNAL OF IMMUNOLOGY 2012; 188:5528-37. [PMID: 22547703 DOI: 10.4049/jimmunol.1102629] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To test the hypothesis that DNA polymerase ζ participates in Ig hypermutation, we generated two mouse models of Pol ζ function: a B cell-specific conditional knockout and a knock-in strain with a Pol ζ mutagenesis-enhancing mutation. Pol ζ-deficient B cells had a reduction in mutation frequency at Ig loci in the spleen and in Peyer's patches, whereas knock-in mice with a mutagenic Pol ζ displayed a marked increase in mutation frequency in Peyer's patches, revealing a pattern that was similar to mutations in yeast strains with a homologous mutation in the gene encoding the catalytic subunit of Pol ζ. Combined, these data are best explained by a direct role for DNA polymerase ζ in Ig hypermutation.
Collapse
Affiliation(s)
- Janssen Daly
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kothapalli NR, Norton DD, Fugmann SD. Classical Mus musculus Igκ enhancers support transcription but not high level somatic hypermutation from a V-lambda promoter in chicken DT40 cells. PLoS One 2011; 6:e18955. [PMID: 21533098 PMCID: PMC3080390 DOI: 10.1371/journal.pone.0018955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/21/2011] [Indexed: 01/28/2023] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin genes is initiated by activation-induced cytidine deaminase (AID) in activated B cells. This process is strictly dependent on transcription. Hence, cis-acting transcriptional control elements have been proposed to target SHM to immunoglobulin loci. The Mus musculus Igκ locus is regulated by the intronic enhancer (iE/MAR) and the 3′ enhancer (3′E), and multiple studies using transgenic and knock-out approaches in mice and cell lines have reported somewhat contradictory results about the function of these enhancers in AID-mediated sequence diversification. Here we show that the M. musculus iE/MAR and 3′E elements are active solely as transcriptional enhancer when placed in the context of the IGL locus in Gallus gallus DT40 cells, but they are very inefficient in targeting AID-mediated mutation events to this locus. This suggests that either key components of the cis-regulatory targeting elements reside outside the murine Igκ transcriptional enhancer sequences, or that the targeting of AID activity to Ig loci occurs by largely species-specific mechanisms.
Collapse
Affiliation(s)
- Naga Rama Kothapalli
- Laboratory of Molecular Biology and Immunology, Molecular Immunology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | | | | |
Collapse
|
10
|
Das S, Hirano M, McCallister C, Tako R, Nikolaidis N. Comparative genomics and evolution of immunoglobulin-encoding loci in tetrapods. Adv Immunol 2011; 111:143-78. [PMID: 21970954 DOI: 10.1016/b978-0-12-385991-4.00004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immunoglobulins (Igs or antibodies) as an integral part of the tetrapod adaptive immune response system have evolved toward producing highly diversified molecules that recognize a remarkably large number of different antigens. Antibodies and their respective encoding loci have been shaped by different and often contrasting evolutionary forces, some of which aim to conserve an established pattern or mechanism and others to generate alternative and diversified structural and functional configurations. The genomic organization, gene content, ratio between functional genes and pseudogenes, number and position of recombining genetic elements, and the different levels of divergence present at the germline of the Ig-encoding loci have been evolutionarily shaped and optimized in a lineage- and, in some cases, species-specific mode aiming to increase organismal fitness. Further, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, such as V(D)J recombination, class switch recombination, isotype exclusion, somatic hypermutation, and gene conversion. Diverse tetrapod species, based on their specific germline configurations, use these mechanisms in several different combinations to effectively generate a vast array of distinct antibody types and structures. This chapter summarizes our current knowledge on the Ig-encoding loci in tetrapods and discusses the different evolutionary mechanisms that shaped their diversification.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
11
|
Regulation of activation-induced cytidine deaminase DNA deamination activity in B-cells by Ser38 phosphorylation. Biochem Soc Trans 2009; 37:561-8. [PMID: 19442251 DOI: 10.1042/bst0370561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human and mouse Ig genes are diversified in mature B-cells by distinct processes known as Ig heavy-chain CSR (class switch recombination) and Ig variable-region exon SHM (somatic hypermutation). These DNA-modification processes are initiated by AID (activation-induced cytidine deaminase), a DNA cytidine deaminase predominantly expressed in activated B-cells. AID is post-transcriptionally regulated via multiple mechanisms, including microRNA regulation, nucleocytoplasmic shuttling, ubiquitination and phosphorylation. Among these regulatory processes, AID phosphorylation at Ser(38) has been a focus of particularly intense study and debate. In the present paper, we discuss recent biochemical and mouse genetic studies that begin to elucidate the functional significance of AID Ser(38) phosphorylation in the context of the evolution of this mode of AID regulation and the potential roles that it may play in activated B-cells during a normal immune response.
Collapse
|
12
|
Kubrycht J, Sigler K. Length of the hypermutation motif DGYW/WRCH in the focus of statistical limits. Implications for a double-motif or extended motif recognition models. J Theor Biol 2008; 255:8-15. [PMID: 18723029 DOI: 10.1016/j.jtbi.2008.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/19/2022]
Abstract
The motif DGYW/WRCH (Mh) and its frequently discussed simplified derivative GYW/WRC (Mhs) are involved in immunoglobulin (Ig) hypermutation. Both these motifs appear to be markedly shorter than the corresponding conventionally predicted minima of valid sequence lengths (MVSL). The same conclusion concerning both Mh and Mhs can also be obtained in the combined case including a less strict semi-empirically defined w-value and one nucleotide length tolerance related to MVSL. Such disagreement indicates considerably low information content in Mh and Mhs when evaluating these motifs as alphabetical structures (words). This fact raises a question of actually recognized structures (presumably longer than Mh and Mhs). Interestingly, both Mh and Mhs dimers or pairs of closely located Mh or Mhs achieve confirmation of length validity in the case of w=0.05, suggesting thus double-motif recognition as one of statistically consistent explanations. This possibility is also in agreement with the results of our model sequence study of mRNA derived from variable Ig gene sequences (rIgV) with respect to the most frequently occurring structures formed by motif overlaps in all model sequence sets. On the other hand, additional superior occurrence of motif pairs at a structurally important distance of a single DNA thread was found in the conserved domain (cd00099) related sequences of Elasmobranchii origin and less markedly in the corresponding human rIgV, but not in a randomly selected human subset of rIgV. The data are discussed with respect to statistical evaluation and structural properties of hypermutation motifs or the competent enzyme, i.e. activation-induced cytidine deaminase.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Laboratory of Biotransformation, National Institute of Public Health, 10042 Prague 10, Czech Republic.
| | | |
Collapse
|
13
|
Somatic hypermutations and isotype restricted exceptionally long CDR3H contribute to antibody diversification in cattle. Vet Immunol Immunopathol 2008; 127:106-13. [PMID: 19012969 DOI: 10.1016/j.vetimm.2008.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/10/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022]
Abstract
Antibody diversification in IgM and IgG antibodies was analyzed in an 18-month old bovine (Bos taurus) suffering from naturally occurring chronic and recurrent infections due to bovine leukocyte adhesion deficiency (BLAD). The BLAD, involving impaired leukocyte beta2 integrin expression on leukocytes, develops due to a single point mutation in conserved region of the CD18 gene resulting in substitution of aspartic acid128 with glycine (D128G). Twenty four VDJCmu and 25 VDJCgamma recombinations from randomly constructed cDNA libraries, originating from peripheral blood lymphocytes, were examined for the variable-region structural characteristics in IgM and IgG antibody isotypes. These analyses led to conclude that: (a) expression of exceptionally long CDR3H is isotype restricted to cattle IgM antibody; (b) VDJ recombinations encoding IgM with exceptionally long CDR3H undergo clonal selection and affinity maturation via somatic mutations similar to conventional antibodies; (c) somatic mutations contribute significantly to both IgM and IgG antibody diversification but significant differences exist in the patterns of 'hot spot' in the FR1, FR3 and CDR1H and, also, position-dependant amino acid diversity; and (d) transition nucleotide substitutions predominate over transversions in both VDJCmu and VDJCgamma recombinations consistent with the evolutionary conservation of somatic mutation machinery. Overall, these studies suggest that both somatic mutations and exceptional CDR3H size generation contribute to IgM and IgG antibody diversification in cattle during the development of immune response to naturally occurring chronic and multiple microbial infections.
Collapse
|
14
|
Ouchida R, Ukai A, Mori H, Kawamura K, Dollé MET, Tagawa M, Sakamoto A, Tokuhisa T, Yokosuka T, Saito T, Yokoi M, Hanaoka F, Vijg J, Wang JY. Genetic analysis reveals an intrinsic property of the germinal center B cells to generate A:T mutations. DNA Repair (Amst) 2008; 7:1392-8. [PMID: 18562254 DOI: 10.1016/j.dnarep.2008.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 01/05/2023]
Abstract
The immunoglobulin genes undergo a high frequency of point mutations at both C:G and A:T pairs in the germinal center (GC) B cells. This hypermutation process is initiated by the activation-induced cytidine deaminase (AID), which converts cytosine to uracil and generates a U:G lesion. Replication of this lesion, or its repair intermediate the abasic site, could introduce C:G mutations but the mechanisms leading to mutations at non-damaged A:T pairs remain elusive. Using a lacZ-transgenic system in which endogenous genome mutations can be detected with high sensitivity, we found that GC B cells exhibited a much higher ratio of A:T mutations as compared to naïve B, non-GC B, and cells of other tissues. This property does not require AID or active transcription of the target gene, and is dependent on DNA polymerase eta. These in vivo results demonstrate that GC B cells are unique in having an intrinsic propensity to generate A:T mutations during repair of endogenous DNA damage. These findings have important implications in understanding how AID, which can only target C:G base pairs, is able to induce the entire spectrum of mutations observed in immunoglobulin variable region genes in GC B cells.
Collapse
Affiliation(s)
- Rika Ouchida
- Laboratory for Immune Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Tsurumi, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zan H, Shima N, Xu Z, Al-Qahtani A, Evinger III AJ, Zhong Y, Schimenti JC, Casali P. The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation. EMBO J 2005; 24:3757-69. [PMID: 16222339 PMCID: PMC1276717 DOI: 10.1038/sj.emboj.7600833] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/12/2005] [Indexed: 11/08/2022] Open
Abstract
Immunoglobulin (Ig) somatic hypermutation (SHM) critically underlies the generation of high-affinity antibodies. Mutations can be introduced by error-prone polymerases such as polymerase zeta (Rev3), a mispair extender, and polymerase eta, a mispair inserter with a preference for dA/dT, while repairing DNA lesions initiated by AID-mediated deamination of dC to yield dU:dG mismatches. The partial impairment of SHM observed in the absence of these polymerases led us to hypothesize a main role for another translesion DNA polymerase. Here, we show that deletion in C57BL/6J mice of the translesion polymerase theta, which possesses a dual nucleotide mispair inserter-extender function, results in greater than 60% decrease of mutations in antigen-selected V186.2DJ(H) transcripts and greater than 80% decrease in mutations in the Ig H chain intronic J(H)4-iEmu sequence, together with significant alterations in the spectrum of the residual mutations. Thus, polymerase theta plays a dominant role in SHM, possibly by introducing mismatches while bypassing abasic sites generated by UDG-mediated deglycosylation of AID-effected dU, by extending DNA past such abasic sites and by synthesizing DNA during dU:dG mismatch repair.
Collapse
Affiliation(s)
- Hong Zan
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Naoko Shima
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhenming Xu
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Ahmed Al-Qahtani
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Albert J Evinger III
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Yuan Zhong
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paolo Casali
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Boshra H, Gelman AE, Sunyer JO. Structural and functional characterization of complement C4 and C1s-like molecules in teleost fish: insights into the evolution of classical and alternative pathways. THE JOURNAL OF IMMUNOLOGY 2004; 173:349-59. [PMID: 15210793 DOI: 10.4049/jimmunol.173.1.349] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is growing evidence that certain components of complement systems in lower vertebrates are promiscuous in their modes of activation through the classical or alternative pathways. To better understand the evolution of the classical pathway, we have evaluated the degree of functional diversification of key components of the classical and alternative pathways in rainbow trout, an evolutionarily relevant teleost species. Trout C4 was purified in two distinct forms (C4-1 and C4-2), both exhibiting the presence of a thioester bond at the cDNA and protein levels. C4-1 and C4-2 bound in a similar manner to trout IgM-sensitized sheep erythrocytes in the presence of Ca(2+)/Mg(2+), and both C4 molecules equally restored the classical pathway-mediated hemolytic activity of serum depleted of C3 and C4. Reconstitution of activity was dependent on the presence of both C3-1 and C4-1/C4-2 and on the presence of IgM bound to the sheep erythrocytes. A C1s-like molecule was shown to cleave specifically purified C4-1 and C4-2 into C4b, while failing to cleave trout C3 molecules. The C1s preparation was unable to cleave trout factor B/C2 when added in the presence of C3b or C4b molecules. Our results show a striking conservation of the mode of activation of the classical pathway. We also show that functional interchange between components of the classical and alternative pathway in teleosts is more restricted than was anticipated. These data suggest that functional diversification between the two pathways must have occurred shortly after the gene duplication that gave rise to the earliest classical pathway molecules.
Collapse
Affiliation(s)
- Hani Boshra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 413 Rosenthal, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
17
|
Abstract
Isotype class switching is central to the humoral immune response. The discovery that mutations in the activation-induced deaminase (AID) gene inhibit class-switch recombination, somatic hypermutation and gene conversion is a major step forward in defining the underlying mechanisms of these gene modification events. The propensity of mutations to occur at dC/dG nucleotides during somatic hypermutation and the homology between AID and cytidine deaminase has resulted in studies demonstrating that AID has the properties of a cytidine-specific mutator and also that elements of the base-excision repair pathway play a central role in class switching and hypermutation. AID is not a promiscuous mutator in the B cell, suggesting that there are specific molecular targeting mechanisms that regulate the accessibility of DNA to AID and differentially regulate class-switch recombination and somatic hypermutation. During class switching, isotype-specific targeting occurs independently of AID and provides another level of specificity to this recombination event.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60680, USA.
| |
Collapse
|
18
|
Weill JC, Bertocci B, Faili A, Aoufouchi S, Frey S, De Smet A, Storck S, Dahan A, Delbos F, Weller S, Flatter E, Reynaud CA. Ig gene hypermutation: a mechanism is due. Adv Immunol 2002; 80:183-202. [PMID: 12078481 DOI: 10.1016/s0065-2776(02)80015-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jean-Claude Weill
- INSERM Unité 373, Faculté de Médecine Necker-Enfants Malades, Université Paris V, 75730 Paris, 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Alberto Martin
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 403, Bronx, New York 10461, USA.
| | | |
Collapse
|
20
|
|
21
|
Sale JE, Calandrini DM, Takata M, Takeda S, Neuberger MS. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 2001; 412:921-6. [PMID: 11528482 DOI: 10.1038/35091100] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion. Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.
Collapse
Affiliation(s)
- J E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|
22
|
Diaz M, Verkoczy LK, Flajnik MF, Klinman NR. Decreased frequency of somatic hypermutation and impaired affinity maturation but intact germinal center formation in mice expressing antisense RNA to DNA polymerase zeta. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:327-35. [PMID: 11418667 DOI: 10.4049/jimmunol.167.1.327] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To examine a role of DNA polymerase zeta in somatic hypermutation, we generated transgenic mice that express antisense RNA to a portion of mouse REV3, the gene encoding this polymerase. These mice express high levels of antisense RNA, significantly reducing the levels of endogenous mouse REV3 transcript. Following immunization to a hapten-protein complex, transgenic mice mounted vigorous Ab responses, accomplished the switch to IgG, and formed numerous germinal centers. However, in most transgenic animals, the generation of high affinity Abs was delayed. In addition, accumulation of somatic mutations in the V(H) genes of memory B cells from transgenic mice was decreased, particularly among those that generate amino acid replacements that enhance affinity of the B cell receptor to the hapten. These data implicate DNA polymerase zeta, a nonreplicative polymerase, in the process of affinity maturation, possibly through a role in somatic hypermutation, clonal selection, or both.
Collapse
Affiliation(s)
- M Diaz
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|