1
|
Zhang M, Li Z, Hu H, Liu J, Qi C. Two HbpA-like proteins HbpA1 and HbpA2 from Actinobacillus pleuropneumoniae protect bacteria from sulfur source limitation, oxidative and cold stresses, but not essential to virulence. Gene 2024; 931:148875. [PMID: 39173979 DOI: 10.1016/j.gene.2024.148875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Porcine pleuropneumonia is one of the respiratory diseases that pigs are susceptible to Actinobacillus pleuropneumoniae (A. pleuropneumoniae), poses a great threat to the global pig industry. Glutathione (GSH) is an important sulfur source, cellular antioxidant and virulence determinant of many pathogenic bacteria. In this study, roles of two HbpA-like proteins HbpA1 and HbpA2 of A. pleuropneumoniae were analyzed. A. pleuropneumoniae mutants without HbpA2 were basically unable to grow in chemically defined medium (CDM) with GSH as the sole sulfur source and had significantly reduced oxidative tolerance; whereas mutation in hbpA1 led to reduced survival under low-temperature environments. Neither HbpA1 nor HbpA2 affects utilization of heme. These two HbpA-like proteins are not associated with the virulence of A. pleuropneumoniae. Our results reveal the correlation of A. pleuropneumoniae HbpA1 and HbpA2 in GSH utilization, highlight the roles of HbpA1 in the cold stress resistance and HbpA2 in the anti-oxidative response. GSH limitation is not a way to attenuate colonization and pathogenicity of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Miao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhuo Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Hanwen Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
2
|
Narla AV, Hwa T, Murugan A. Dynamic coexistence driven by physiological transitions in microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575059. [PMID: 38260536 PMCID: PMC10802591 DOI: 10.1101/2024.01.10.575059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.
Collapse
Affiliation(s)
| | - Terence Hwa
- Department of Physics, University of California, San Diego
| | | |
Collapse
|
3
|
Narla AV, Hwa T, Murugan A. Dynamic coexistence driven by physiological transitions in microbial communities. ARXIV 2024:arXiv:2401.02556v1. [PMID: 38259349 PMCID: PMC10802671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.
Collapse
Affiliation(s)
| | - Terence Hwa
- Department of Physics, University of California, San Diego
| | | |
Collapse
|
4
|
Reconstruction and Analysis of Thermodynamically Constrained Models Reveal Metabolic Responses of a Deep-Sea Bacterium to Temperature Perturbations. mSystems 2022; 7:e0058822. [PMID: 35950761 PMCID: PMC9426432 DOI: 10.1128/msystems.00588-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial acclimation to different temperature conditions can involve broad changes in cell composition and metabolic efficiency. A systems-level view of these metabolic responses in nonmesophilic organisms, however, is currently missing. In this study, thermodynamically constrained genome-scale models were applied to simulate the metabolic responses of a deep-sea psychrophilic bacterium, Shewanella psychrophila WP2, under suboptimal (4°C), optimal (15°C), and supraoptimal (20°C) growth temperatures. The models were calibrated with experimentally determined growth rates of WP2. Gibbs free energy change of reactions (ΔrG'), metabolic fluxes, and metabolite concentrations were predicted using random simulations to characterize temperature-dependent changes in the metabolism. The modeling revealed the highest metabolic efficiency at the optimal temperature, and it suggested distinct patterns of ATP production and consumption that could lead to lower metabolic efficiency under suboptimal or supraoptimal temperatures. The modeling also predicted rearrangement of fluxes through multiple metabolic pathways, including the glycolysis pathway, Entner-Doudoroff pathway, tricarboxylic acid (TCA) cycle, and electron transport system, and these predictions were corroborated through comparisons to WP2 transcriptomes. Furthermore, predictions of metabolite concentrations revealed the potential conservation of reducing equivalents and ATP in the suboptimal temperature, consistent with experimental observations from other psychrophiles. Taken together, the WP2 models provided mechanistic insights into the metabolism of a psychrophile in response to different temperatures. IMPORTANCE Metabolic flexibility is a central component of any organism's ability to survive and adapt to changes in environmental conditions. This study represents the first application of thermodynamically constrained genome-scale models in simulating the metabolic responses of a deep-sea psychrophilic bacterium to various temperatures. The models predicted differences in metabolic efficiency that were attributed to changes in metabolic pathway utilization and metabolite concentration during growth under optimal and nonoptimal temperatures. Experimental growth measurements were used for model calibration, and temperature-dependent transcriptomic changes corroborated the model-predicted rearrangement of metabolic fluxes. Overall, this study highlights the utility of modeling approaches in studying the temperature-driven metabolic responses of an extremophilic organism.
Collapse
|
5
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
6
|
Sen S, Patel A, Gola KK. Design of a Toolbox of RNA Thermometers. Methods Mol Biol 2022; 2518:125-133. [PMID: 35666443 DOI: 10.1007/978-1-0716-2421-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
RNA thermometers are RNA regulatory elements that convert temperature into a functional biological response through a temperature-induced conformational change. These regulatory elements have been investigated in numerous natural contexts and have been designed for synthetic biology as well. A basic challenge has been the design of an RNA thermometer whose final activity in response to temperature matches a prespecified response, in terms of its sensitivity, threshold, and leakiness. This chapter provides a methodology for the design of a toolbox of RNA thermometers. We describe considerations for the conceptual design, a computational assessment, and strategies for experimental synthesis and measurement.
Collapse
Affiliation(s)
- Shaunak Sen
- Department of Electrical Engineering, IIT Delhi, New Delhi, India.
| | - Abhilash Patel
- Department of Bioengineering, Imperial College, London, UK
| | | |
Collapse
|
7
|
Thermodynamic and structural basis of temperature-dependent gating in TRP channels. Biochem Soc Trans 2021; 49:2211-2219. [PMID: 34623379 DOI: 10.1042/bst20210301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Living organisms require detecting the environmental thermal clues for survival, allowing them to avoid noxious stimuli or find prey moving in the dark. In mammals, the Transient Receptor Potential ion channels superfamily is constituted by 27 polymodal receptors whose activity is controlled by small ligands, peptide toxins, protons and voltage. The thermoTRP channels subgroup exhibits unparalleled temperature dependence -behaving as heat and cold sensors. Functional studies have dissected their biophysical features in detail, and the advances of single-particle Cryogenic Electron microscopy provided the structural framework required to propose detailed channel gating mechanisms. However, merging structural and functional evidence for temperature-driven gating of thermoTRP channels has been a hard nut to crack, remaining an open question nowadays. Here we revisit the highlights on the study of heat and cold sensing in thermoTRP channels in the light of the structural data that has emerged during recent years.
Collapse
|
8
|
Liu X, Lin S, Liu T, Zhou Y, Wang W, Yao J, Guo Y, Tang K, Chen R, Benedik MJ, Wang X. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella. Nucleic Acids Res 2021; 49:3427-3440. [PMID: 33693785 PMCID: PMC8034616 DOI: 10.1093/nar/gkab137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Apura P, de Lorenzo V, Arraiano CM, Martínez-García E, Viegas SC. Ribonucleases control distinct traits of Pseudomonas putida lifestyle. Environ Microbiol 2020; 23:174-189. [PMID: 33089610 DOI: 10.1111/1462-2920.15291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022]
Abstract
The role of archetypal ribonucleases (RNases) in the physiology and stress endurance of the soil bacterium and metabolic engineering platform Pseudomonas putida KT2440 has been inspected. To this end, variants of this strain lacking each of the most important RNases were constructed. Each mutant lacked either one exoribonuclease (PNPase, RNase R) or one endoribonuclease (RNase E, RNase III, RNase G). The global physiological and metabolic costs of the absence of each of these enzymes were then analysed in terms of growth, motility and morphology. The effects of different oxidative chemicals that mimic the stresses endured by this microorganism in its natural habitats were studied as well. The results highlighted that each ribonuclease is specifically related with different traits of the environmental lifestyle that distinctively characterizes this microorganism. Interestingly, the physiological responses of P. putida to the absence of each enzyme diverged significantly from those known previously in Escherichia coli. This exposed not only species-specific regulatory functions for otherwise known RNase activities but also expanded the panoply of post-transcriptional adaptation devices that P. putida can make use of for facing hostile environments.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid, 28049, Spain
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| | - Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid, 28049, Spain
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| |
Collapse
|
10
|
Pattanayak S, Priyadarsini S, Paul A, Kumar PR, Sahoo PK. Diversity of virulence-associated genes in pathogenic Aeromonas hydrophila isolates and their in vivo modulation at varied water temperatures. Microb Pathog 2020; 147:104424. [PMID: 32771658 DOI: 10.1016/j.micpath.2020.104424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Most environmental parameters have no consistent effect on the expression of bacterial genes responsible for their virulence. However, as fish are poikilothermic, the possibility of temperature variation having a pronounced effect on the expression of virulence-associated gene(s) of bacteria infecting the host needs to be investigated. In this study, the diversity of virulence genes in seven Aeromonas hydrophila isolates collected from diseased fish from different parts of India was characterized, and the effect of temperature variation on the extent of expression of their virulence was investigated. All bacterial isolates were screened for a total of nine bacterial virulent genes {aerolysin, hemolysin, cytoen, outer membrane protein TS (Omp TS), elastase, flagellin, lipase, β hemolysin and type 3 secretion system}, and the diversity in their presence or absence were marked at a particular in vitro condition. Three bacterial isolates (nos. 1, 7 and 2) were selected for further study, based on their ability to cause varied mortalities (20-100%) in Labeo rohita juveniles in intraperitoneal challenge study. Further, three isolates were injected intraperitoneally into L. rohita fingerlings at three different temperatures (i.e., 20, 28 and 37 °C) and at 6 h post-challenge, the kidney samples were collected to measure the levels of all nine bacterial virulence genes using semi-quantitative PCR. The maximum level of amplicons of virulence genes in all three A. hydrophila isolates was noticed at 28 °C as compared to 37 °C and 20 °C. It was also observed that haemolysin played a more prominent role in the expression of virulence, when compared to cytoen gene. Hence, it was concluded that water temperature does play a crucial role in governing virulence gene expression, and a temperature of 28 °C would be considered as suitable for looking into the pathogenicity of A. hydrophila for conducting any challenge study with this organism in tropical environment.
Collapse
Affiliation(s)
- Sabyasachi Pattanayak
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Swatismita Priyadarsini
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Anirban Paul
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - P Rajesh Kumar
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - P K Sahoo
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India.
| |
Collapse
|
11
|
Fujinami D, -Mahin AA, Elsayed KM, Islam MR, Nagao JI, Roy U, Momin S, Zendo T, Kohda D, Sonomoto K. The lantibiotic nukacin ISK-1 exists in an equilibrium between active and inactive lipid-II binding states. Commun Biol 2018; 1:150. [PMID: 30272026 PMCID: PMC6156582 DOI: 10.1038/s42003-018-0150-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/17/2018] [Indexed: 11/28/2022] Open
Abstract
The lantibiotic nukacin ISK-1 exerts antimicrobial activity through binding to lipid II. Here, we perform NMR analyses of the structure of nukacin ISK-1 and the interaction with lipid II. Unexpectedly, nukacin ISK-1 exists in two structural states in aqueous solution, with an interconversion rate on a time scale of seconds. The two structures differ in the relative orientations of the two lanthionine rings, ring A and ring C. Chemical shift perturbation induced by the titration of lipid II reveals that only one state was capable of binding to lipid II. On the molecular surface of the active state, a multiple hydrogen-bonding site formed by amino acid residues in the ring A region is adjacent to a hydrophobic surface formed by residues in the ring C region, and we propose that these sites interact with the pyrophosphate moiety and the isoprene chain of the lipid II molecule, respectively. Fujinami et al. show that an antimicrobial peptide Nukacin ISK-1 exists in an equilibrium between two states, only one of which can bind to the ISK-1’s target lipid-II, an important bacterial cell wall precursor. This study provides unexpected insights into the action modes of antibiotics.
Collapse
Affiliation(s)
- Daisuke Fujinami
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Abdullah-Al -Mahin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Laboratory of Microbial Technology, Kyushu University, Fukuoka, 812-8581, Japan.,Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar 1207, Dhaka, 1349, Bangladesh
| | - Khaled M Elsayed
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Laboratory of Microbial Technology, Kyushu University, Fukuoka, 812-8581, Japan.,Department of Microbiology, Faculty of Pharmacy, Misr International University, Cairo, 19648, Egypt
| | - Mohammad R Islam
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Laboratory of Microbial Technology, Kyushu University, Fukuoka, 812-8581, Japan.,Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Jun-Ichi Nagao
- Department of Functional Bioscience, Section of Infection Biology, Fukuoka Dental College, Fukuoka, 814-0175, Japan
| | - Urmi Roy
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Laboratory of Microbial Technology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sabrina Momin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Laboratory of Microbial Technology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Takeshi Zendo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Laboratory of Microbial Technology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Kenji Sonomoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Laboratory of Microbial Technology, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
12
|
Ricke SC, Dawoud TM, Kim SA, Park SH, Kwon YM. Salmonella Cold Stress Response: Mechanisms and Occurrence in Foods. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:1-38. [PMID: 30143250 DOI: 10.1016/bs.aambs.2018.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since bacteria in foods often encounter various cold environments during food processing, such as chilling, cold chain distribution, and cold storage, lower temperatures can become a major stress environment for foodborne pathogens. Bacterial responses in stressful environments have been considered in the past, but now the importance of stress responses at the molecular level is becoming recognized. Documenting how bacterial changes occur at the molecular level may help to achieve the in-depth understanding of stress responses, to predict microbial fate when they encounter cold temperatures, and to design and develop more effective strategies to control pathogens in food for ensuring food safety. Microorganisms differ in responding to a sudden downshift in temperature and this, in turn, impacts their metabolic processes and can cause various structural modifications. In this review, the fundamental aspects of bacterial cold stress responses focused on cell membrane modification, DNA supercoiling modification, transcriptional and translational responses, cold-induced protein synthesis including CspA, CsdA, NusA, DnaA, RecA, RbfA, PNPase, KsgA, SrmB, trigger factors, and initiation factors are discussed. In this context, specific Salmonella responses to cold temperature including growth, injury, and survival and their physiological and genetic responses to cold environments with a focus on cross-protection, different gene expression levels, and virulence factors will be discussed.
Collapse
Affiliation(s)
- Steven C Ricke
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Food Science, University of Arkansas, Fayetteville, AR, United States.
| | - Turki M Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Food Science, University of Arkansas, Fayetteville, AR, United States; Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States; Center for Food Safety, University of Arkansas, Fayetteville, AR, United States; Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
13
|
Guzmán-Trampe S, Ceapa CD, Manzo-Ruiz M, Sánchez S. Synthetic biology era: Improving antibiotic’s world. Biochem Pharmacol 2017; 134:99-113. [DOI: 10.1016/j.bcp.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
|
14
|
Abstract
The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors.
Collapse
|
15
|
Abstract
Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health.
Collapse
Affiliation(s)
- Oliver Lam
- a The Sir William Dunn School of Pathology ; University of Oxford ; Oxford , UK
| | | | | |
Collapse
|
16
|
Guijarro JA, Cascales D, García-Torrico AI, García-Domínguez M, Méndez J. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol 2015. [PMID: 26217329 PMCID: PMC4496569 DOI: 10.3389/fmicb.2015.00700] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation.
Collapse
Affiliation(s)
- José A. Guijarro
- *Correspondence: José A. Guijarro, Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, C/Julían Clavería 6, 33006 Oviedo, Spain,
| | | | | | | | | |
Collapse
|
17
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
18
|
Durack J, Ross T, Bowman JP. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One 2013; 8:e73603. [PMID: 24023890 PMCID: PMC3762727 DOI: 10.1371/journal.pone.0073603] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/29/2013] [Indexed: 12/29/2022] Open
Abstract
The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation.
Collapse
Affiliation(s)
- Juliana Durack
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
19
|
Hérault E, Reverchon S, Nasser W. Role of the LysR-type transcriptional regulator PecT and DNA supercoiling in the thermoregulation of pel genes, the major virulence factors in Dickeya dadantii. Environ Microbiol 2013; 16:734-45. [PMID: 23869858 DOI: 10.1111/1462-2920.12198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/30/2022]
Abstract
Bacteria are colonizers of various environments and host organisms, and they are often subjected to drastic temperature variations. Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that destroy plant cell walls. The production of Pels is controlled by a complex regulation system that responds to various stimuli, such as the presence of pectin, growth phase and temperature. Despite numerous regulatory studies, the thermoregulation mechanism of Pel production remains unexplained. Here, we show that PecT, a previously identified repressor, modulates pel gene expression in a temperature-dependent manner, and we demonstrate that PecT binding on pel promoters increases concomitantly with temperature. High temperatures relax the DNA in D. dadantii, and remarkably, artificial relaxation of DNA at low temperatures increases PecT binding to DNA. Deletion of pecT augmented the capacity of D. dadantii to initiate soft-rot symptoms at high temperatures. These results reveal that DNA topology and PecT act in concert to fine-tune D. dadantii virulence in response to temperature. This novel combination between DNA topology and a conventional transcriptional regulator extends our understanding of the thermoregulation mechanisms involved in bacterial virulence.
Collapse
Affiliation(s)
- Elodie Hérault
- Université Lyon 1, F-69622, Villeurbanne, France; INSA de Lyon, F-69621, Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, F69622, Villeurbanne, France
| | | | | |
Collapse
|
20
|
Torno K, Wright BK, Jones MR, Digman MA, Gratton E, Phillips M. Real-time analysis of metabolic activity within Lactobacillus acidophilus by phasor fluorescence lifetime imaging microscopy of NADH. Curr Microbiol 2012; 66:365-7. [PMID: 23233088 DOI: 10.1007/s00284-012-0285-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/14/2012] [Indexed: 11/29/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) is an endogenous fluorescent molecule commonly used as a metabolic biomarker. Fluorescence lifetime imaging microscopy (FLIM) is a method in which the fluorescence decay is measured at each pixel of an image. While the fluorescence spectrum of free and protein-bound NADH is very similar, free and protein-bound NADH display very different decay profiles. Therefore, FLIM can provide a way to distinguish free/bound NADH at the level of single bacteria within biological samples. The phasor technique is a graphical method to analyse the entire image and to produce a histogram of pixels with different decay profile. In this study, NADH fluorescence decay profiles within Lactobacillus acidophilus samples treated using different protocols indicated discernible variations. Clear distinctions between fluorescence decay profiles of NADH in samples of artificially heightened metabolic activity in comparison to those of samples lacking an accessible carbon source were obtained.
Collapse
Affiliation(s)
- Keenan Torno
- School of Science and Health, University of Western Sydney, Richmond, NSW, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Verde C, di Prisco G, Giordano D, Russo R, Anderson D, Cowan D. Antarctic psychrophiles: models for understanding the molecular basis of survival at low temperature and responses to climate change. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/14888386.2012.706703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Shuo-shuo C, Xue-zheng L, Ji-hong S. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr Purif 2011; 77:166-72. [PMID: 21272645 DOI: 10.1016/j.pep.2011.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
The cold-active lipase gene Lip-948, cloned from Antarctic psychrotrophic bacterium Psychrobacter sp. G, was ligated into plasmid pColdI. The recombinant plasmid pColdI+Lip-948 was then transformed into Escherichia coli BL21. SDS-PAGE analysis showed that there was substantive expression of lipase LIP-948 in E. coli with a yield of about 39% of total protein, most of which was present in the inclusion body. The soluble protein LIP-948 only consisted of 1.7% of total LIP-948 with a specific activity of 66.51U/mg. Co-expression of molecular chaperones with the pColdI+Lip-948 were also carried out. The results showed that co-expression of different chaperones led to an increase or decrease in the formation of soluble LIP-948 in varying degrees. Co-expression of pColdI+Lip-948 with chaperone pTf16 and pGro7 decreased the amount of soluble LIP-948, while the soluble expression was enhanced when pColdI+Lip-948 was co-expressed with "chaperone team" plasmids (pKJE7, pG-Tf2, pG-KJE8), respectively. LIP-948 was most efficiently expressed in soluble form when it was co-expressed with pG-KJE8, which was up to 19.8% of intracellular soluble proteins and with a specific activity of 108.77U/mg. The soluble LIP-948 was purified with amylase affinity chromatography and its enzymatic characters were studied. The optimal temperature and pH of LIP-948 was 35°C and 8, respectively. The activity of LIP-948 dropped dramatically after incubation at 50°C for 15min and was enhanced by Sr(2+), Ca(2+). It preferentially hydrolyzed 4-nitrophenyl esters with the shorter carbon chain.
Collapse
Affiliation(s)
- Cui Shuo-shuo
- First Institute of Oceanography, SOA, Qingdao 266061, China
| | | | | |
Collapse
|
23
|
|
24
|
Zheng H, Wu H. Gene-centric association analysis for the correlation between the guanine-cytosine content levels and temperature range conditions of prokaryotic species. BMC Bioinformatics 2010; 11 Suppl 11:S7. [PMID: 21172057 PMCID: PMC3024870 DOI: 10.1186/1471-2105-11-s11-s7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The environment has been playing an instrumental role in shaping and maintaining the morphological, physiological and biochemical diversities of prokaryotes. It has been debatable whether the whole-genome Guanine-Cytosine (GC) content levels of prokaryotic organisms are correlated with their optimal growth temperatures. Since the GC content is variable within a genome, we here focus on the correlation between the genic GC content levels and the temperature range conditions of prokaryotic organisms. Results The GC content levels in the coding regions of four genes were consistently identified as correlated with the temperature range condition when the association analysis was applied to (i) the 722 mesophilic and 93 thermophilic/hyperthermophilic organisms regardless of their phylogeny, oxygen requirement, salinity, or habitat conditions, and (ii) partial lists of organisms when organisms with certain phylogeny, oxygen requirement, salinity or habitat conditions were excluded. These four genes are K01251 (adenosylhomocysteinase), K03724 (DNA repair and recombination proteins), K07588 (LAO/AO transport system kinase), and K09122 (hypothetical protein). To further validate the identified correlation relationships, we examined to what extent the temperature range condition of an organism can be predicted based on the GC content levels in the coding regions of the selected genes. The 84.52% accuracy for the complete genomes, the 84.09% accuracy for the in-progress genomes, and 82.70% accuracy for the metagenomes, especially when being compared to the 50% accuracy rendered by random guessing, suggested that the temperature range condition of a prokaryotic organism can generally be predicted based on the GC content levels of the selected genomic regions. Conclusions The results rendered by various statistical tests and prediction tests indicated that the GC content levels of the coding/non-coding regions of certain genes are highly likely to be correlated with the temperature range conditions of prokaryotic organisms. Therefore, it is promising to carry out “reverse ecology” and to complete the ecological characterizations of prokaryotic organisms, i.e., to infer their temperature range conditions based on the GC content levels of certain genomic regions.
Collapse
Affiliation(s)
- Hao Zheng
- School of Electrical and Computer Engineering, Georgia Institute of Technology, USA.
| | | |
Collapse
|
25
|
Ruelland E, Zachowski A. How plants sense temperature. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2010. [PMID: 0 DOI: 10.1016/j.envexpbot.2010.05.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
26
|
How do bacteria sense and respond to low temperature? Arch Microbiol 2010; 192:85-95. [DOI: 10.1007/s00203-009-0539-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/19/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
|
27
|
Cottier F, Mühlschlegel FA. Sensing the environment: response of Candida albicans to the X factor. FEMS Microbiol Lett 2009; 295:1-9. [PMID: 19473245 DOI: 10.1111/j.1574-6968.2009.01564.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Virulence of the fungal human pathogen Candida albicans is also attributed to its ability to switch reversibly between yeast and hyphal growth forms. Morphogenesis in this yeast is influenced by the composition of the environment, activating sensors, which consequently play an important role in fungal pathogenicity. This review summarizes some of the main environmental sensors, their ligands and downstream signaling pathways in C. albicans. We will focus on proteins localized in the plasma membrane and on the interaction between cells and their environment. This will underline the convergence of several environmental signals onto the mitogen-activated protein kinase and protein kinase A pathways.
Collapse
Affiliation(s)
- Fabien Cottier
- Department of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
28
|
Coronatine Gene Expression In Vitro and In Planta, and Protein Accumulation During Temperature Downshift in Pseudomonas syringae. SENSORS 2009; 9:4272-85. [PMID: 22408526 PMCID: PMC3291911 DOI: 10.3390/s90604272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/30/2022]
Abstract
The plant pathogenic bacterium Pseudomonas syringae PG4180 synthesizes high levels of the phytotoxin coronatine (COR) at the virulence-promoting temperature of 18 °C, but negligible amounts at 28 °C. Temperature-dependent COR gene expression is regulated by a modified two-component system, consisting of a response regulator, CorR, the histidine protein kinase CorS, and a third component, termed CorP. We analyzed at transcriptional and translational levels the expression of corS and the cma operon involved in COR biosynthesis after a temperature downshift from 28 to 18 °C. Expression of cma was induced within 20 min and increased steadily whereas corS expression was only slightly temperature-dependent. Accumulation of CmaB correlated with accumulation of cma mRNA. However, cma transcription was suppressed by inhibition of de novo protein biosynthesis. A transcriptional fusion of the cma promoter to a promoterless egfp gene was used to monitor the cma expression in vitro and in planta. A steady induction of cma::egfp by temperature downshift was observed in both environments. The results indicate that PG4180 responds to a temperature decrease with COR gene expression. However, COR gene expression and protein biosynthesis increased steadily, possibly reflecting adaptation to long-term rather than rapid temperature changes.
Collapse
|
29
|
Molecular processes in biological thermosensation. JOURNAL OF BIOPHYSICS 2008; 2008:602870. [PMID: 20130806 PMCID: PMC2814129 DOI: 10.1155/2008/602870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/16/2008] [Indexed: 12/30/2022]
Abstract
Since thermal gradients are almost everywhere, thermosensation could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins) can present a target of the temperature-related stimuli. This review discusses some features of different classes of temperature-sensing molecules as well as molecular and biological processes that involve thermosensation. Biochemical, structural, and thermodynamic approaches are applied in the paper to organize the existing knowledge on molecular mechanisms of thermosensation. Special attention is paid to the fact that thermosensitive function cannot be assigned to any particular functional group or spatial structure but is rather of universal nature. For instance, the complex of thermodynamic, structural, and functional features of hemoglobin family proteins suggests their possible accessory role as “molecular thermometers”.
Collapse
|
30
|
Uppal S, Akkipeddi VSNR, Jawali N. Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5'-untranslated region. FEMS Microbiol Lett 2008; 279:83-91. [PMID: 18177308 DOI: 10.1111/j.1574-6968.2007.01009.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Escherichia coli K-12 contains nine paralogs of CspA, namely CspA-CspI. In spite of considerable sequence similarity among these genes, the individual members of this family show significant differences in their expression regulation. Among these nine members, cspA, B, G and I have been reported to be cold-induced. The unusually long 5'-untranslated region (5'-UTR) of these four and other cold-induced genes has often been associated with their inducibility. Sequence analysis of the cspE upstream region revealed two promoter-like motifs having high scores. We identified the promoter site and established that cspE has a much shorter 5'-UTR compared to other cold-induced genes. Our results showed that cspE is induced to about threefold at both the transcript and the protein level in response to cold-shock. Its transcript half-life increases significantly upon cold-shock. Furthermore, we demonstrated that RNase E, a key endonuclease responsible for mRNA degradation in E. coli, regulates cspE transcript stability, possibly through the assembly of a degradosome. In silico analysis of the cspE 5'-UTR revealed alternative secondary structures at 37 and 15 degrees C. A point mutation that was predicted to relax the secondary structure of the 5'-UTR at 15 degrees C showed considerable reduction in transcript stability, indicating that alternative transcript secondary structures might be the cause of the differential stability.
Collapse
Affiliation(s)
- Sheetal Uppal
- Bhabha Atomic Research Centre, Molecular Biology Division, Trombay, Mumbai, India
| | | | | |
Collapse
|
31
|
Marx JC, Collins T, D'Amico S, Feller G, Gerday C. Cold-adapted enzymes from marine Antarctic microorganisms. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:293-304. [PMID: 17195087 DOI: 10.1007/s10126-006-6103-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/09/2006] [Indexed: 05/13/2023]
Abstract
The Antarctic marine environment is characterized by challenging conditions for the survival of native microorganisms. Indeed, next to the temperature effect represented by the Arrhenius law, the viscosity of the medium, which is also significantly enhanced by low temperatures, contributes to slow down reaction rates. This review analyses the different challenges and focuses on a key element of life at low temperatures: cold-adapted enzymes. The molecular characteristics of these enzymes are discussed as well as the adaptation strategies which can be inferred from the comparison of their properties and three-dimensional structures with those of their mesophilic counterparts. As these enzymes display a high specific activity at low and moderate temperatures associated with a relatively high thermosensitivity, the interest in these properties is discussed with regard to their current and possible applications in biotechnology.
Collapse
Affiliation(s)
- J-C Marx
- Laboratory of Biochemistry, Institute of Chemistry, B6, Sart-Tilman, University of Liège, B-4000, Liège, Belgium
| | | | | | | | | |
Collapse
|
32
|
Ono S, Goldberg M, Olsson T, Esposito D, Hinton J, Ladbury J. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 2005; 391:203-13. [PMID: 15966862 PMCID: PMC1276917 DOI: 10.1042/bj20050453] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 01/03/2023]
Abstract
Temperature is a primary environmental stress to which micro-organisms must be able to adapt and respond rapidly. Whereas some bacteria are restricted to specific niches and have limited abilities to survive changes in their environment, others, such as members of the Enterobacteriaceae, can withstand wide fluctuations in temperature. In addition to regulating cellular physiology, pathogenic bacteria use temperature as a cue for activating virulence gene expression. This work confirms that the nucleoid-associated protein H-NS (histone-like nucleoid structuring protein) is an essential component in thermoregulation of Salmonella. On increasing the temperature from 25 to 37 degrees C, more than 200 genes from Salmonella enterica serovar Typhimurium showed H-NS-dependent up-regulation. The thermal activation of gene expression is extremely rapid and change in temperature affects the DNA-binding properties of H-NS. The reduction in gene repression brought about by the increase in temperature is concomitant with a conformational change in the protein, resulting in the decrease in size of high-order oligomers and the appearance of increasing concentrations of discrete dimers of H-NS. The present study addresses one of the key complex mechanisms by which H-NS regulates gene expression.
Collapse
Affiliation(s)
- Shusuke Ono
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Martin D. Goldberg
- †Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, U.K
| | - Tjelvar Olsson
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Diego Esposito
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Jay C. D. Hinton
- †Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, U.K
| | - John E. Ladbury
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
33
|
Salomé PA, McClung CR. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. THE PLANT CELL 2005; 17:791-803. [PMID: 15705949 PMCID: PMC1069699 DOI: 10.1105/tpc.104.029504] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 12/23/2004] [Indexed: 05/18/2023]
Abstract
Environmental time cues, such as photocycles (light/dark) and thermocycles (warm/cold), synchronize (entrain) endogenous biological clocks to local time. Although much is known about entrainment of the Arabidopsis thaliana clock to photocycles, the determinants of thermoperception and entrainment to thermocycles are not known. The Arabidopsis PSEUDO-RESPONSE REGULATOR (PRR) genes, including the clock component TIMING OF CAB EXPRESSION 1/PRR1, are related to bacterial, fungal, and plant response regulators but lack the conserved Asp that is normally phosphorylated by an upstream sensory kinase. Here, we show that two PRR family members, PRR7 and PRR9, are partially redundant; single prr7-3 or prr9-1 mutants exhibit modest period lengthening, but the prr7-3 prr9-1 double mutant shows dramatic and more than additive period lengthening in the light and becomes arrhythmic in constant darkness. The prr7-3 prr9-1 mutant fails both to maintain an oscillation after entrainment to thermocycles and to reset its clock in response to cold pulses and thus represents an important mutant strongly affected in temperature entrainment in higher plants. We conclude that PRR7 and PRR9 are critical components of a temperature-sensitive circadian system. PRR7 and PRR9 could function in temperature and light input pathways or they could represent elements of an oscillator necessary for the clock to respond to temperature signals.
Collapse
Affiliation(s)
- Patrice A Salomé
- Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire 03755-3576, USA
| | | |
Collapse
|
34
|
Smirnova AV, Ullrich MS. Topological and deletion analysis of CorS, a Pseudomonas syringae sensor kinase. Microbiology (Reading) 2004; 150:2715-2726. [PMID: 15289568 DOI: 10.1099/mic.0.27028-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A modified two-component regulatory system consisting of two response regulators, CorR and CorP, and the histidine protein kinase CorS, regulates the thermoresponsive production of the phytotoxin coronatine (COR) in Pseudomonas syringae PG4180. COR is produced at the virulence-promoting temperature of 18 °C, but not at 28 °C, the optimal growth temperature of PG4180. Assuming that the highly hydrophobic N-terminus of CorS might be involved in temperature-signal perception, the membrane topology of CorS was determined using translational phoA and lacZ fusions, leading to a topological model for CorS with six transmembrane domains (TMDs). Interestingly, three PhoA fusions located downstream of the sixth TMD showed a thermoresponsive phenotype. Enzymic activity, immunoblot, and protease-sensitivity assays were performed to localize the CorS derivatives, to analyse the expression level of hybrid proteins and to examine the model. In-frame deletions of the last four, or all six TMDs gave rise to non-functional CorS. The results indicated that the transmembrane region is important for CorS to function as a temperature sensor, and that the membrane topology of CorS might be involved in signal perception.
Collapse
Affiliation(s)
- Angela V Smirnova
- International University Bremen, School of Engineering and Sciences, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Matthias S Ullrich
- International University Bremen, School of Engineering and Sciences, Research II, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
35
|
Cairrão F, Cruz A, Mori H, Arraiano CM. Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 2004; 50:1349-60. [PMID: 14622421 DOI: 10.1046/j.1365-2958.2003.03766.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this paper we show that RNase R is a cold shock protein that is induced seven- to eightfold by cold shock and that its expression is tightly regulated by temperature. Transcriptional studies reveal that the rnr gene is co-transcribed with flanking genes as an operon induced under cold shock. The induction of RNase R levels is mainly a result of the stabilization of the rnr transcripts. The transient stability of the rnr transcripts is shown to be regulated by PNPase at the end of the acclimation phase. Studies with an rnr mutant revealed a cold-shock phenotype showing that RNase R contributes to growth at low temperatures. We have shown that RNase R can be involved in the maturation of SsrA/tmRNA, an important small stable RNA involved in protein tagging and ribosome rescue. The wide biological significance of RNase R regarding adaptation to cold shock and its involvement in RNA surveillance, protein quality control and pathogenesis is discussed.
Collapse
Affiliation(s)
- Fátima Cairrão
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apt 127, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
36
|
Abstract
Synthesis of the small regulatory RNA DsrA is under temperature control. The minimal dsrA promoter of 36 bp contains sufficient information to ensure such regulation. In vivo, we have analyzed the critical elements responsible for the temperature control of dsrA by using a collection of chimeric promoters combining various elements of the dsrA promoter and the lacUV5 promoter, which does not respond to temperature. Our results favor an RNA polymerase-DNA interaction model instead of a trans-acting factor for temperature regulation. While all of the elements of the dsrA promoter contribute to temperature-sensitive expression, the sequence of the -10 box and the spacer region are the essential elements for the thermal response of the dsrA promoter. The proper context for these promoter elements, including at least one of the flanking elements, the -35 region or the start site region, is also required. Point mutations demonstrate that the sequence of the -10 box imposes constraints on the length and the sequence of the spacer and/or its AT richness, even at low temperature. These results show a complex interdependence of different regions in the promoter for temperature regulation.
Collapse
Affiliation(s)
- F Repoila
- Laboratoire de Microbiologie Moléculaire, UMR 1225 INRA-ENVT, Toulouse, France
| | | |
Collapse
|
37
|
Abstract
As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (sigma 32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.
Collapse
|