1
|
Mandal A, Boatz JC, Wheeler TB, van der Wel PCA. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. JOURNAL OF BIOMOLECULAR NMR 2017; 67:165-178. [PMID: 28229262 PMCID: PMC5445385 DOI: 10.1007/s10858-017-0089-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/19/2017] [Indexed: 05/07/2023]
Abstract
A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Travis B Wheeler
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
3
|
Huang W, Bardaro MF, Varani G, Drobny GP. Preparation of RNA samples with narrow line widths for solid state NMR investigations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:51-54. [PMID: 22967888 DOI: 10.1016/j.jmr.2012.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/19/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Solid state NMR can provide detailed structural and dynamic information on biological systems that cannot be studied under solution conditions, and can investigate motions which occur with rates that cannot be fully studied by solution NMR. This approach has successfully been used to study proteins, but the application of multidimensional solid state NMR to RNA has been limited because reported line widths have been too broad to execute most multidimensional experiments successfully. A reliable method to generate spectra with narrow line widths is necessary to apply the full range of solid state NMR spectroscopic approaches to RNA. Using the HIV-1 transactivation response (TAR) RNA as a model, we present an approach based on precipitation with polyethylene glycol that improves the line width of (13)C signals in TAR from >6 ppm to about 1 ppm, making solid state 2D NMR studies of selectively enriched RNAs feasible at ambient temperature.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
4
|
Wei K, ZeXiang S, Malini O. Generation of Ultralarge Surface Enhanced Raman Spectroscopy (SERS)-Active Hot-Spot Volumes by an Array of 2D Nano-Superlenses. Anal Chem 2011; 84:908-16. [DOI: 10.1021/ac201712k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- KhoKiang Wei
- School of Physics, National University of Ireland, Galway, Ireland
- National Cancer Centre of Singapore, Division of Medical Sciences, 11 Hospital Drive, 169610 Singapore
| | - Shen ZeXiang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Olivo Malini
- School of Physics, National University of Ireland, Galway, Ireland
- National Cancer Centre of Singapore, Division of Medical Sciences, 11 Hospital Drive, 169610 Singapore
| |
Collapse
|
5
|
Sergeyev IV, Day LA, Goldbourt A, McDermott AE. Chemical shifts for the unusual DNA structure in Pf1 bacteriophage from dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy. J Am Chem Soc 2011; 133:20208-17. [PMID: 21854063 DOI: 10.1021/ja2043062] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100 K, as well as non-DNP spectra at a variety of field strengths and at temperatures in the range 213-243 K, have allowed the assignment of the (13)C and (15)N resonances of the unusual DNA structure in the Pf1 virion. The (13)C chemical shifts of C3' and C5', considered to be key reporters of deoxyribose conformation, fall near or beyond the edges of their respective ranges in available databases. The (13)C and (15)N chemical shifts of the DNA bases have above-average values for AC4, AC5, CC5, TC2, and TC5, and below average values for AC8, GC8, and GN2, pointing to an absence of Watson-Crick hydrogen bonding, yet the presence of some type of aromatic ring interaction. Crosspeaks between Tyr40 of the coat protein and several DNA atoms suggest that Tyr40 is involved in this ring interaction. In addition, these crosspeak resonances and several deoxyribose resonances are multiply split, presumably through the effects of ordered but differing interactions between capsid protein subunits and each type of nucleotide in each of the two DNA strands. Overall, these observations characterize and support the DNA model proposed by Liu and Day and refined by Tsuboi et al., which calls for the most highly stretched and twisted naturally occurring DNA yet encountered.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | | | | | | |
Collapse
|
6
|
Abramov G, Morag O, Goldbourt A. Magic-Angle Spinning NMR of a Class I Filamentous Bacteriophage Virus. J Phys Chem B 2011; 115:9671-80. [DOI: 10.1021/jp2040955] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gili Abramov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
7
|
Nadaud PS, Helmus JJ, Kall SL, Jaroniec CP. Paramagnetic Ions Enable Tuning of Nuclear Relaxation Rates and Provide Long-Range Structural Restraints in Solid-State NMR of Proteins. J Am Chem Soc 2009; 131:8108-20. [DOI: 10.1021/ja900224z] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philippe S. Nadaud
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Jonathan J. Helmus
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Stefanie L. Kall
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
8
|
Helmus JJ, Nadaud PS, Höfer N, Jaroniec CP. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. J Chem Phys 2008; 128:052314. [PMID: 18266431 DOI: 10.1063/1.2817638] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range (15)N-(13)C(methyl) dipolar couplings in uniformly (13)C, (15)N-enriched peptides and proteins with high resolution and sensitivity. The methods take advantage of (13)C spin topologies characteristic of the side-chain methyl groups in amino acids alanine, isoleucine, leucine, methionine, threonine, and valine to encode up to three distinct frequencies ((15)N-(13)C(methyl) dipolar coupling, (15)N chemical shift, and (13)C(methyl) chemical shift) within a single SCT evolution period of initial duration approximately 1(1)J(CC) (where (1)J(CC) approximately 35 Hz, is the one-bond (13)C(methyl)-(13)C J-coupling) while concurrently suppressing the modulation of NMR coherences due to (13)C-(13)C and (15)N-(13)C J-couplings and transverse relaxation. The SCT-TEDOR schemes offer several important advantages over previous methods of this type. First, significant (approximately twofold to threefold) gains in experimental sensitivity can be realized for weak (15)N-(13)C(methyl) dipolar couplings (corresponding to structurally interesting, approximately 3.5 A or longer, distances) and typical (13)C(methyl) transverse relaxation rates. Second, the entire SCT evolution period can be used for (13)C(methyl) and/or (15)N frequency encoding, leading to increased spectral resolution with minimal additional coherence decay. Third, the experiments are inherently "methyl selective," which results in simplified NMR spectra and obviates the use of frequency-selective pulses or other spectral filtering techniques. Finally, the (15)N-(13)C cross-peak buildup trajectories are purely dipolar in nature (i.e., not influenced by J-couplings or relaxation), which enables the straightforward extraction of (15)N-(13)C(methyl) distances using an analytical model. The SCT-TEDOR experiments are demonstrated on a uniformly (13)C, (15)N-labeled peptide, N-acetyl-valine, and a 56 amino acid protein, B1 immunoglobulin-binding domain of protein G (GB1), where the measured (15)N-(13)C(methyl) dipolar couplings provide site-specific information about side-chain dihedral angles and the packing of protein molecules in the crystal lattice.
Collapse
Affiliation(s)
- Jonathan J Helmus
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
9
|
Li Y, Williams TD, Schowen RL, Topp EM. Trehalose and calcium exert site-specific effects on calmodulin conformation in amorphous solids. Biotechnol Bioeng 2007; 97:1650-3. [PMID: 17286268 DOI: 10.1002/bit.21362] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have adapted hydrogen/deuterium (H/D) exchange with electrospray ionization mass spectrometry (ESI-MS) to study protein conformation and excipient interactions in lyophilized solids. Using calmodulin (CaM, 17 kD) as a model protein, we demonstrate that trehalose and calcium exert site-specific effects on protein conformation. The effects of calcium are observed primarily in the calcium binding loops, while those of trehalose are observed primarily in non-terminal alpha-helical regions. To our knowledge, this is the first demonstration of site-specificity in the effects of excipients on protein structure in the solid state, and of the utility of H/D exchange with ESI-MS to characterize proteins in amorphous solids.
Collapse
Affiliation(s)
- Yunsong Li
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
10
|
Goldbourt A, Gross BJ, Day LA, McDermott AE. Filamentous Phage Studied by Magic-Angle Spinning NMR: Resonance Assignment and Secondary Structure of the Coat Protein in Pf1. J Am Chem Soc 2007; 129:2338-44. [PMID: 17279748 DOI: 10.1021/ja066928u] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Assignments are presented for resonances in the magic-angle spinning solid-state NMR spectra of the major coat protein subunit of the filamentous bacteriophage Pf1. NMR spectra were collected on uniformly 13C and 15N isotopically enriched, polyethylene glycol precipitated samples of fully infectious and hydrated phage. Site-specific assignments were achieved for 231 of the 251 labeled atoms (92%) of the 46-residue-long coat protein, including 136 of the 138 backbone atoms, by means of two- and three-dimensional 15N and 13C correlation experiments. A single chemical shift was observed for the vast majority of atoms, suggesting a single conformation for the 7300 subunits in the 36 MDa virion in its high-temperature form. On the other hand, multiple chemical shifts were observed for the Calpha, Cbeta, and Cgamma atoms of T5 in the helix terminus and the Calpha and Cbeta atoms of M42 in the DNA interaction domain. The chemical shifts of the backbone atoms indicate that the coat protein conformation involves a 40-residue continuous alpha-helix extending from residue 6 to the C-terminus.
Collapse
Affiliation(s)
- Amir Goldbourt
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
11
|
Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kühlbrandt W, Oschkinat H. Solid-State Magic-Angle Spinning NMR of Outer-Membrane Protein G from Escherichia coli. Chembiochem 2005; 6:1679-84. [PMID: 16138308 DOI: 10.1002/cbic.200500132] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uniformly 13C-,15N-labelled outer-membrane protein G (OmpG) from Escherichia coli was expressed for structural studies by solid-state magic-angle spinning (MAS) NMR. Inclusion bodies of the recombinant, labelled protein were purified under denaturing conditions and refolded in detergent. OmpG was reconstituted into lipid bilayers and several milligrams of two-dimensional crystals were obtained. Solid-state MAS NMR spectra showed signals with an apparent line width of 80-120 Hz (including homonuclear scalar couplings). Signal patterns for several amino acids, including threonines, prolines and serines were resolved and identified in 2D proton-driven spin-diffusion (PDSD) spectra.
Collapse
Affiliation(s)
- Matthias Hiller
- Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|