1
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Matityahu A, Onn I. It's all in the numbers: Cohesin stoichiometry. Front Mol Biosci 2022; 9:1010894. [PMID: 36330215 PMCID: PMC9623059 DOI: 10.3389/fmolb.2022.1010894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2024] Open
Abstract
Cohesin, a structural maintenance of chromosome (SMC) complex, organizes chromatin into three-dimensional structures by threading chromatin into loops and stabilizing long-range chromatin interactions. Four subunits in a 1:1:1:1 ratio compose the cohesin core, which is regulated by auxiliary factors that interact with or modify the core subunits. An ongoing debate about cohesin's mechanism of action regards its stoichiometry. Namely, is cohesin activity mediated by a single complex or cooperation between several complexes that organize into dimers or oligomers? Several investigations that used various experimental approaches have tried to resolve this dispute. Some have convincingly demonstrated that the cohesin monomer is the active unit. However, others have revealed the formation of cohesin dimers and higher-order clusters on and off chromosomes. Elucidating the biological function of cohesin clusters and determining what regulates their formation are just two of the many new questions raised by these findings. We briefly review the history of the argument about cohesin stoichiometry and the central evidence for cohesin activity as a monomer vs. an oligomer. Finally, we discuss the possible biological significance of cohesin oligomerization and present open questions that remain to be answered.
Collapse
Affiliation(s)
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Safed, Israel
| |
Collapse
|
3
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
4
|
Chen Z, Cao H, Lu Y, Ren Q, Sun L. DNA polymerase 5 acetylation by Eso1 is essential for Schizosaccharomyces pombe viability. Int J Mol Med 2017; 40:1907-1913. [PMID: 29039458 DOI: 10.3892/ijmm.2017.3192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/24/2017] [Indexed: 11/05/2022] Open
Abstract
Eco1/Eso1 protein plays an important role in chromosome segregation, DNA repair and gene regulation. Eco1 mutation induces Roberts syndrome clinically and rDNA transcription disorders in vivo. In this study, we examined the role of Eso1 protein binding to polymerase 5 (Pol5) and the acetylation of Pol5 protein in the regulation of Schizosaccharomyces pombe (S. pombe) viability. Immunoprecipitation and mass spectrometry assays identified Eso1 protein binding to Cdc2, Pol5 and Cdc21, as well as other proteins. Pol5 protein specifically bound to Eso1 protein, but not to the Rad30 part or Rad30 part plus the additional zinc finger domain of Eco1 protein. Mass spectrometry data further identified several acetylation or trimethylation modification sites in the lysine residues of the Pol5 protein. However, the mutation of the Pol5 K47 site to arginine was lethal to S. pombe. Eso1 protein was able to acetylate Pol5 protein and mediate S. pombe viability. On the whole, our data indicate that the Eso1 interaction with Pol5 which acetylates Pol5 protein is essential for S. pombe viability.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Hongshi Cao
- Department of Neurosurgery, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Yingqiang Lu
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Qiang Ren
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Liankun Sun
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Roig MB, Löwe J, Chan KL, Beckouët F, Metson J, Nasmyth K. Structure and function of cohesin's Scc3/SA regulatory subunit. FEBS Lett 2014; 588:3692-702. [PMID: 25171859 PMCID: PMC4175184 DOI: 10.1016/j.febslet.2014.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022]
Abstract
Crystal structure of cohesin subunit Scc3/SA, showing irregular HEAT-like repeats. Scc3 C-terminal domain binds Scc1, cohesin’s kleisin. Scc1’s Scc3 binding region mapped. Scc3 turns over in G2/M while maintaining cohesin’s association with chromosomes. Scc3 promotes de-acetylation of Smc3 upon Scc1 cleavage. Sister chromatid cohesion involves entrapment of sister DNAs by a cohesin ring created through association of a kleisin subunit (Scc1) with ATPase heads of Smc1/Smc3 heterodimers. Cohesin’s association with chromatin involves subunits recruited by Scc1: Wapl, Pds5, and Scc3/SA, in addition to Scc2/4 loading complex. Unlike Pds5, Wapl, and Scc2/4, Scc3s are encoded by all eukaryotic genomes. Here, a crystal structure of Scc3 reveals a hook-shaped protein composed of tandem α helices. Its N-terminal domain contains a conserved and essential surface (CES) present even in organisms lacking Pds5, Wapl, and Scc2/4, while its C-terminal domain binds a section of the kleisin Scc1. Scc3 turns over in G2/M while maintaining cohesin’s association with chromosomes and it promotes de-acetylation of Smc3 upon Scc1 cleavage.
Collapse
Affiliation(s)
- Maurici B Roig
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Kok-Lung Chan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Frédéric Beckouët
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jean Metson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
6
|
Mailhes JB, Marchetti F. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Abstract
During S phase, not only does DNA have to be replicated, but also newly synthesized DNA molecules have to be connected with each other. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic or meiotic spindle, and is thus an essential prerequisite for chromosome segregation. Cohesion is mediated by cohesin complexes that are thought to embrace sister chromatids as large rings. Cohesin binds to DNA dynamically before DNA replication and is converted into a stably DNA-bound form during replication. This conversion requires acetylation of cohesin, which in vertebrates leads to recruitment of sororin. Sororin antagonizes Wapl, a protein that is able to release cohesin from DNA, presumably by opening the cohesin ring. Inhibition of Wapl by sororin therefore "locks" cohesin rings on DNA and allows them to maintain cohesion for long periods of time in mammalian oocytes, possibly for months or even years.
Collapse
|
8
|
Chan KL, Roig M, Hu B, Beckouët F, Metson J, Nasmyth K. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 2012; 150:961-74. [PMID: 22901742 PMCID: PMC3485559 DOI: 10.1016/j.cell.2012.07.028] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/27/2012] [Accepted: 07/02/2012] [Indexed: 12/15/2022]
Abstract
Sister chromatid cohesion is mediated by entrapment of sister DNAs by a tripartite ring composed of cohesin's Smc1, Smc3, and α-kleisin subunits. Cohesion requires acetylation of Smc3 by Eco1, whose role is to counteract an inhibitory (antiestablishment) activity associated with cohesin's Wapl subunit. We show that mutations abrogating antiestablishment activity also reduce turnover of cohesin on pericentric chromatin. Our results reveal a "releasing" activity inherent to cohesin complexes transiently associated with Wapl that catalyzes their dissociation from chromosomes. Fusion of Smc3's nucleotide binding domain to α-kleisin's N-terminal domain also reduces cohesin turnover within pericentric chromatin and permits establishment of Wapl-resistant cohesion in the absence of Eco1. We suggest that releasing activity opens the Smc3/α-kleisin interface, creating a DNA exit gate distinct from its proposed entry gate at the Smc1/3 interface. According to this notion, the function of Smc3 acetylation is to block its dissociation from α-kleisin. The functional implications of regulated ring opening are discussed.
Collapse
Affiliation(s)
- Kok-Lung Chan
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Maurici B. Roig
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Bin Hu
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Frédéric Beckouët
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Jean Metson
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Kim Nasmyth
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
9
|
Courtheoux T, Gay G, Gachet Y, Tournier S. Ase1/Prc1-dependent spindle elongation corrects merotely during anaphase in fission yeast. ACTA ACUST UNITED AC 2010; 187:399-412. [PMID: 19948483 PMCID: PMC2779255 DOI: 10.1083/jcb.200902093] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The tug of war that ensues when a kinetochore binds microtubules from both spindle poles is resolved by Ase1/Prc1. Faithful segregation of sister chromatids requires the attachment of each kinetochore (Kt) to microtubules (MTs) that extend from opposite spindle poles. Merotelic Kt orientation is a Kt–MT misattachment in which a single Kt binds MTs from both spindle poles rather than just one. Genetic induction of merotelic Kt attachment during anaphase in fission yeast resulted in intra-Kt stretching followed by either correction or Kt disruption. Laser ablation of spindle MTs revealed that intra-Kt stretching and merotelic correction were dependent on MT forces. The presence of multiple merotelic chromosomes linearly antagonized the spindle elongation rate, and this phenomenon could be solved numerically using a simple force balance model. Based on the predictions of our mechanical model, we provide in vivo evidence that correction of merotelic attachment in anaphase is tension dependent and requires an Ase1/Prc1-dependent mechanism that prevents spindle collapse and thus asymmetric division and/or the appearance of the cut phenotype.
Collapse
Affiliation(s)
- Thibault Courtheoux
- Université de Toulouse, Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération UMR5088, F-31062 Toulouse, France
| | | | | | | |
Collapse
|
10
|
Ghosh SK, Huang CC, Hajra S, Jayaram M. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res 2010; 38:570-84. [PMID: 19920123 PMCID: PMC2811031 DOI: 10.1093/nar/gkp993] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/30/2022] Open
Abstract
Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and propagates itself stably, presumably with assistance from cohesin. In metaphase cell lysates, or fractions enriched for their cohesed state by sedimentation, plasmid molecules are trapped topologically by the protein ring formed by cohesin. They can be released from cohesin's embrace either by linearizing the DNA or by cleaving a cohesin subunit. Assays using two distinctly tagged cohesin molecules argue against the hand-cuff (an associated pair of monomeric cohesin rings) or the bracelet (a dimeric cohesin ring) model as responsible for establishing plasmid cohesion. Our cumulative results most easily fit a model in which a single monomeric cohesin ring, rather than a series of such rings, conjoins a pair of sister plasmids. These features of plasmid cohesion account for its sister-to-sister mode of segregation by cohesin disassembly during anaphase. The mechanistic similarities of cohesion between mini-chromosome sisters and 2 micron plasmid sisters suggest a potential kinship between the plasmid partitioning locus and centromeres.
Collapse
Affiliation(s)
- Santanu K. Ghosh
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | - Chu-Chun Huang
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sujata Hajra
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India and Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Tempera I, Lieberman PM. Chromatin organization of gammaherpesvirus latent genomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:236-45. [PMID: 19853673 DOI: 10.1016/j.bbagrm.2009.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/02/2009] [Accepted: 10/11/2009] [Indexed: 12/12/2022]
Abstract
The gammaherpesviruses are a subclass of the herpesvirus family that establish stable latent infections in proliferating lymphoid and epithelial cells. The latent genomes are maintained as multicopy chromatinized episomes that replicate in synchrony with the cellular genome. Importantly, most of the episomes do not integrate into the host chromosome. Therefore, it is essential that the viral "minichromosome" establish a chromatin structure that is suitable for gene expression, DNA replication, and chromosome segregation. Evidence suggests that chromatin organization is important for each of these functions and plays a regulatory role in the establishment and maintenance of latent infection. Here, we review recent studies on the chromatin organization of the human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV). We discuss the potential role of viral origins of DNA replication and viral encoded origin-binding proteins like EBNA1 and LANA in establishment of viral chromosome organization during latent infection. We also discuss the roles of host cell factors, like CTCF and cohesins, that contribute to higher-order chromosome structures that may be important for stable gene expression programs during latent infection in proliferating cells.
Collapse
|
12
|
Kang H, Lieberman PM. Cell cycle control of Kaposi's sarcoma-associated herpesvirus latency transcription by CTCF-cohesin interactions. J Virol 2009; 83:6199-210. [PMID: 19369356 PMCID: PMC2687369 DOI: 10.1128/jvi.00052-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/02/2009] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) latency is characterized by the highly regulated transcription of a few viral genes essential for genome maintenance and host cell survival. A major latency control region has been identified upstream of the divergent promoters for the multicistronic transcripts encoding LANA (ORF73), vCyclin (ORF72), and vFLIP (ORF71) and for the complementary strand transcript encoding K14 and vGPCR (ORF74). Previous studies have shown that this major latency control region is occupied by the cellular chromatin boundary factor CTCF and chromosome structural maintenance proteins SMC1, SMC3, and RAD21, which comprise the cohesin complex. Deletion of the CTCF-cohesin binding site caused an inhibition of cell growth and viral genome instability. We now show that the KSHV genes regulated by CTCF-cohesin are under cell cycle control and that mutation of the CTCF binding sites abolished cell cycle-regulated transcription. Cohesin subunits assembled at the CTCF binding sites and bound CTCF proteins in a cell cycle-dependent manner. Subcellular distribution of CTCF and colocalization with cohesins also varied across the cell cycle. Ectopic expression of Rad21 repressed CTCF-regulated transcription of KSHV lytic genes, and a Rad21-CTCF chimeric protein converted CTCF into an efficient transcriptional repressor of KSHV genes normally activated in the G(2) phase. We conclude that cohesins interact with CTCF in mid-S phase and repress CTCF-regulated genes in a cell cycle-dependent manner. We propose that the CTCF-cohesin complex plays a critical role in regulating the cell cycle control of viral gene expression during latency and that failure to maintain cell cycle control of latent transcripts inhibits host cell proliferation and survival.
Collapse
Affiliation(s)
- Hyojeung Kang
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
13
|
Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P, Mishra A, Beckouët F, Underwood P, Metson J, Imre R, Mechtler K, Katis VL, Nasmyth K. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol Cell 2009; 33:763-74. [PMID: 19328069 DOI: 10.1016/j.molcel.2009.02.028] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/19/2008] [Accepted: 02/17/2009] [Indexed: 11/24/2022]
Abstract
Cohesin's Smc1, Smc3, and Scc1 subunits form a tripartite ring that entraps sister DNAs. Scc3, Pds5, and Rad61 (Wapl) are regulatory subunits that control this process. We describe here smc3, scc3, pds5, and rad61 mutations that permit yeast cell proliferation and entrapment of sister DNAs by cohesin rings in the absence of Eco1, an acetyl transferase normally essential for establishing sister chromatid cohesion. The smc3 mutations cluster around and include a highly conserved lysine (K113) close to Smc3's ATP-binding pocket, which, together with K112, is acetylated by Eco1. Lethality caused by mutating both residues to arginine is suppressed by the scc3, pds5, and rad61 mutants. Scc3, Pds5, and Rad61 form a complex and inhibit entrapment of sister DNAs by a process involving the "K112/K113" surface on Smc3's ATPase. According to this model, Eco1 promotes sister DNA entrapment partly by relieving an antiestablishment activity associated with Scc3, Pds5, and Rad61.
Collapse
Affiliation(s)
- Benjamin D Rowland
- University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol 2009; 19:492-7. [PMID: 19268589 DOI: 10.1016/j.cub.2009.01.062] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/25/2009] [Accepted: 01/28/2009] [Indexed: 11/19/2022]
Abstract
Sister chromatid cohesion, which is mediated by the cohesin complex, is vital for faithful segregation of chromosomes in mitosis and meiosis (reviewed in). Cohesion is established during S phase, and this process requires the function of the acetyltransferase Eco1/Ctf7. The mechanism of the cohesion establishment is, however, still unclear. Here, we describe isolation and identification of genetic suppressors of budding yeast eco1-1 temperature-sensitive mutant. By using a recently described microarray-based method, we successfully mapped 11 intergenic suppressor mutations in two genes, wpl1 (also known as rad61) and pds5. Pds5 is a known accessory factor of cohesin complex, and we show that Wpl1/Rad61 protein forms a complex with Pds5 and colocalizes with cohesin on chromosomes, as its presumed human homolog Wapl. Impaired function of Wpl1-Pds5 complex makes Eco1 dispensable for cell survival. We also provide evidence that Wpl1 is required for efficient association of cohesin with G2 phase chromosomes and that Eco1 promotes dissociation of Wpl1-Pds5 from cohesin via acetylation of Smc3, a cohesin subunit. Taken together, the presented data suggest that Wpl1-Pds5 complex is inhibitory for cohesion establishment and that Eco1 establishes cohesion by hindering the function of Wpl1-Pds5 temporally in S phase.
Collapse
Affiliation(s)
- Takashi Sutani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | |
Collapse
|
15
|
Abstract
The cohesin complex is a major constituent of interphase and mitotic chromosomes. Apart from its role in mediating sister chromatid cohesion, it is also important for DNA double-strand-break repair and transcriptional control. The functions of cohesin are regulated by phosphorylation, acetylation, ATP hydrolysis, and site-specific proteolysis. Recent evidence suggests that cohesin acts as a novel topological device that traps chromosomal DNA within a large tripartite ring formed by its core subunits.
Collapse
Affiliation(s)
- Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | |
Collapse
|
16
|
Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev 2008; 22:2886-901. [PMID: 18923085 DOI: 10.1101/gad.1694108] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Segregation of homologous chromosomes during meiosis depends on linkages (chiasmata) created by crossovers and on selective release of a subset of sister chromatid cohesion at anaphase I. During Caenorhabditis elegans meiosis, each chromosome pair forms a single crossover, and the position of this event determines which chromosomal regions will undergo cohesion release at anaphase I. Here we provide insight into the basis of this coupling by uncovering a large-scale regional change in chromosome axis composition that is triggered by crossovers. We show that axial element components HTP-1 and HTP-2 are removed during late pachytene, in a crossover-dependent manner, from the regions that will later be targeted for anaphase I cohesion release. We demonstrate correspondence in position and number between chiasmata and HTP-1/2-depleted regions and provide evidence that HTP-1/2 depletion boundaries mark crossover sites. In htp-1 mutants, diakinesis bivalents lack normal asymmetrical features, and sister chromatid cohesion is prematurely lost during the meiotic divisions. We conclude that HTP-1 is central to the mechanism linking crossovers with late-prophase bivalent differentiation and defines the domains where cohesion will be protected until meiosis II. Further, we discuss parallels between the pattern of HTP-1/2 removal in response to crossovers and the phenomenon of crossover interference.
Collapse
Affiliation(s)
- Enrique Martinez-Perez
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
17
|
Bermejo R, Branzei D, Foiani M. Cohesion by topology: sister chromatids interlocked by DNA. Genes Dev 2008; 22:2297-301. [PMID: 18765785 DOI: 10.1101/gad.1719308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sister chromatid cohesion is coupled with chromosome replication and influences chromosome segregation and intra-S repair. Specialized proteins, the cohesins, together with other pathways contribute to tether sister chromatids. In this issue of Genes & Development, Wang and colleagues (pp. 2426-2433 demonstrate that TopoIV, a type II DNA topoisomerase, modulates cohesion in Escherichia coli, by removing interlocked DNA junctions between sister chromatids. They propose that DNA precatenanes, arising during replication fork progression, hold sister chromatids together.
Collapse
Affiliation(s)
- Rodrigo Bermejo
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | | | | |
Collapse
|
18
|
Doll E, Molnar M, Cuanoud G, Octobre G, Latypov V, Ludin K, Kohli J. Cohesin and recombination proteins influence the G1-to-S transition in azygotic meiosis in Schizosaccharomyces pombe. Genetics 2008; 180:727-40. [PMID: 18780734 PMCID: PMC2567376 DOI: 10.1534/genetics.108.092619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
To determine whether recombination and/or sister-chromatid cohesion affect the timing of meiotic prophase events, the horsetail stage and S phase were analyzed in Schizosaccharomyces pombe strains carrying mutations in the cohesin genes rec8 or rec11, the linear element gene rec10, the pairing gene meu13, the double-strand-break formation genes rec6, rec7, rec12, rec14, rec15, and mde2, and the recombination gene dmc1. The double-mutant strains rec8 rec11 and rec8 rec12 were also assayed. Most of the single and both double mutants showed advancement of bulk DNA synthesis, start of nuclear movement (horsetail stage), and meiotic divisions by up to 2 hr. Only mde2 and dmc1 deletion strains showed wild-type timing. Contrasting behavior was observed for rec8 deletions (delayed by 1 hr) compared to a rec8 point mutation (advanced by 1 hr). An hypothesis for the role of cohesin and recombination proteins in the control of the G(1)-to-S transition is proposed. Finally, differences between azygotic meiosis and two other types of fission yeast meiosis (zygotic and pat1-114 meiosis) are discussed with respect to possible control steps in meiotic G(1).
Collapse
Affiliation(s)
- Eveline Doll
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Mailhes JB. Faulty spindle checkpoint and cohesion protein activities predispose oocytes to premature chromosome separation and aneuploidy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:642-58. [PMID: 18626998 DOI: 10.1002/em.20412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aneuploidy accounts for a major proportion of human reproductive failures, mental and physical anomalies, and neoplasms. To heighten our understanding of normal and abnormal chromosome segregation, additional information is needed about the underlying molecular mechanisms of chromosome segregation. Although many hypotheses have been proposed for the etiology of human aneuploidy, there has not been general acceptance of any specific hypothesis. Moreover, it is important to recognize that many potential mechanisms exist whereby chromosome missegregation may occur. One area for investigating aneuploidy centers on the biochemical changes that take place during oocyte maturation. In this regard, recent results have shown that faulty mRNA of spindle-assembly checkpoint proteins and chromosome cohesion proteins may lead to aneuploidy. Also, postovulatory and in vitro aging of mouse oocytes has been shown to lead to decreased levels of Mad2 transcripts and elevated frequencies of premature centromere separation. The intent of this review is to highlight the major events surrounding chromosome segregation and to present the published results that support the premise that faulty chromosome cohesion proteins and spindle checkpoint proteins compromise accurate chromosome segregation.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA.
| |
Collapse
|
20
|
Rolef Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, Skehel M, Uhlmann F. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 2008; 321:563-6. [PMID: 18653893 DOI: 10.1126/science.1157774] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Replicated chromosomes are held together by the chromosomal cohesin complex from the time of their synthesis in S phase onward. This requires the replication fork-associated acetyl transferase Eco1, but Eco1's mechanism of action is not known. We identified spontaneous suppressors of the thermosensitive eco1-1 allele in budding yeast. An acetylation-mimicking mutation of a conserved lysine in cohesin's Smc3 subunit makes Eco1 dispensable for cell growth, and we show that Smc3 is acetylated in an Eco1-dependent manner during DNA replication to promote sister chromatid cohesion. A second set of eco1-1 suppressors inactivate the budding yeast ortholog of the cohesin destabilizer Wapl. Our results indicate that Eco1 modifies cohesin to stabilize sister chromatid cohesion in parallel with a cohesion establishment reaction that is in principle Eco1-independent.
Collapse
Affiliation(s)
- Tom Rolef Ben-Shahar
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln'sInn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ. Chromosome cohesion - rings, knots, orcs and fellowship. J Cell Sci 2008; 121:2107-14. [PMID: 18565823 DOI: 10.1242/jcs.029132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sister-chromatid cohesion is essential for accurate chromosome segregation. A key discovery towards our understanding of sister-chromatid cohesion was made 10 years ago with the identification of cohesins. Since then, cohesins have been shown to be involved in cohesion in numerous organisms, from yeast to mammals. Studies of the composition, regulation and structure of the cohesin complex led to a model in which cohesin loading during S-phase establishes cohesion, and cohesin cleavage at the onset of anaphase allows sister-chromatid separation. However, recent studies have revealed activities that provide cohesion in the absence of cohesin. Here we review these advances and propose an integrative model in which chromatid cohesion is a result of the combined activities of multiple cohesion mechanisms.
Collapse
Affiliation(s)
- Laura A Díaz-Martínez
- Department of Pharmacology, UT-Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX75390, USA.
| | | | | |
Collapse
|
22
|
Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 2008; 27:654-66. [PMID: 18219272 PMCID: PMC2262040 DOI: 10.1038/emboj.2008.1] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 01/03/2008] [Indexed: 01/26/2023] Open
Abstract
Cohesins, which mediate sister chromatin cohesion, and CTCF, which functions at chromatin boundaries, play key roles in the structural and functional organization of chromosomes. We examined the binding of these two factors on the Kaposi's sarcoma-associated herpesvirus (KSHV) episome during latent infection and found a striking colocalization within the control region of the major latency transcript responsible for expressing LANA (ORF73), vCyclin (ORF72), vFLIP (ORF71), and vmiRNAs. Deletion of the CTCF-binding site from the viral genome disrupted cohesin binding, and crippled colony formation in 293 cells. Clonal instability correlated with elevated expression of lytic cycle gene products, notably the neighbouring promoter for K14 and vGPCR (ORF74). siRNA depletion of RAD21 from latently infected cells caused an increase in K14 and ORF74, and lytic inducers caused a rapid dissociation of RAD21 from the viral genome. RAD21 and SMC1 also associate with the cellular CTCF sites at mammalian c-myc promoter and H19/Igf2 imprinting control region. We conclude that cohesin subunits associate with viral and cellular CTCF sites involved in complex gene regulation and chromatin organization.
Collapse
Affiliation(s)
- William Stedman
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyojeung Kang
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shu Lin
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Joseph L Kissil
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paul M Lieberman
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
|
24
|
Skibbens RV. Mechanisms of sister chromatid pairing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:283-339. [PMID: 18779060 DOI: 10.1016/s1937-6448(08)01005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The continuance of life through cell division requires high fidelity DNA replication and chromosome segregation. During DNA replication, each parental chromosome is duplicated exactly and one time only. At the same time, the resulting chromosomes (called sister chromatids) become tightly paired along their length. This S-phase pairing, or cohesion, identifies chromatids as sisters over time. During mitosis in most eukaryotes, sister chromatids bi-orient to the mitotic spindle. After each chromosome pair is properly oriented, the cohesion established during S phase is inactivated in a tightly regulated fashion, allowing sister chromatids to segregate away from each other. Recent findings of cohesin structure and enzymology provide new insights into cohesion, while many critical facets of cohesion (how cohesins tether together sister chromatids and how those tethers are established) remain actively debated.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
25
|
Dheekollu J, Deng Z, Wiedmer A, Weitzman MD, Lieberman PM. A role for MRE11, NBS1, and recombination junctions in replication and stable maintenance of EBV episomes. PLoS One 2007; 2:e1257. [PMID: 18040525 PMCID: PMC2094660 DOI: 10.1371/journal.pone.0001257] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 11/07/2007] [Indexed: 11/18/2022] Open
Abstract
Recombination-like structures formed at origins of DNA replication may contribute to replication fidelity, sister chromatid cohesion, chromosome segregation, and overall genome stability. The Epstein-Barr Virus (EBV) origin of plasmid replication (OriP) provides episomal genome stability through a poorly understood mechanism. We show here that recombinational repair proteins MRE11 and NBS1 are recruited to the Dyad Symmetry (DS) region of OriP in a TRF2- and cell cycle-dependent manner. Depletion of MRE11 or NBS1 by siRNA inhibits OriP replication and destabilized viral episomes. OriP plasmid maintenance was defective in MRE11 and NBS1 hypomorphic fibroblast cell lines and only integrated, non-episomal forms of EBV were detected in a lympoblastoid cell line derived from an NBS1-mutated individual. Two-dimensional agarose gel analysis of OriP DNA revealed that recombination-like structures resembling Holliday-junctions form at OriP in mid S phase. MRE11 and NBS1 association with DS coincided with replication fork pausing and origin activation, which preceded the formation of recombination structures. We propose that NBS1 and MRE11 promote replication-associated recombination junctions essential for EBV episomal maintenance and genome stability.
Collapse
Affiliation(s)
- Jayaraju Dheekollu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zhong Deng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Ocampo-Hafalla MT, Katou Y, Shirahige K, Uhlmann F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 2007; 116:531-44. [PMID: 17763979 PMCID: PMC2075529 DOI: 10.1007/s00412-007-0118-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 01/22/2023]
Abstract
The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This 'centromere breathing' presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres.
Collapse
Affiliation(s)
- Maria T. Ocampo-Hafalla
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX UK
| | - Yuki Katou
- Center for Biological Resources and Informatics, Division of Gene Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| | - Katsuhiko Shirahige
- Center for Biological Resources and Informatics, Division of Gene Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX UK
| |
Collapse
|
27
|
Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner KP, Shirahige K, Uhlmann F. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 2006; 23:787-99. [PMID: 16962805 DOI: 10.1016/j.molcel.2006.08.018] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/02/2006] [Accepted: 08/22/2006] [Indexed: 11/26/2022]
Abstract
Two identical sister copies of eukaryotic chromosomes are synthesized during S phase. To facilitate their recognition as pairs for segregation in mitosis, sister chromatids are held together from their synthesis onward by the chromosomal cohesin complex. Replication fork progression is thought to be coupled to establishment of sister chromatid cohesion, facilitating identification of replication products, but evidence for this has remained circumstantial. Here we show that three proteins required for sister chromatid cohesion, Eco1, Ctf4, and Ctf18, are found at, and Ctf4 travels along chromosomes with, replication forks. The ring-shaped cohesin complex is loaded onto chromosomes before S phase in an ATP hydrolysis-dependent reaction. Cohesion establishment during DNA replication follows without further cohesin recruitment and without need for cohesin to re-engage an ATP hydrolysis motif that is critical for its initial DNA binding. This provides evidence for cohesion establishment in the context of replication forks and imposes constraints on the mechanism involved.
Collapse
Affiliation(s)
- Armelle Lengronne
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Moldovan GL, Pfander B, Jentsch S. PCNA Controls Establishment of Sister Chromatid Cohesion during S Phase. Mol Cell 2006; 23:723-32. [PMID: 16934511 DOI: 10.1016/j.molcel.2006.07.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/09/2006] [Accepted: 07/10/2006] [Indexed: 11/21/2022]
Abstract
Accurate segregation of the genetic material during cell division requires that sister chromatids are kept together by cohesion proteins until anaphase, when the chromatids become separated and distributed to the two daughter cells. Studies in yeast revealed that chromatid cohesion is essential for viability and is triggered by the conserved protein Eco1 (Ctf7). Cohesion must be established already in S phase in order to tie up sister chromatids instantly after replication, but how this crucial timing is achieved remains enigmatic. Here, we report that in yeast and humans Eco1 is directly physically coupled to the replication protein PCNA, a ring-shaped cofactor of DNA polymerases. Binding to PCNA is crucial, as yeast Eco1 mutants deficient in Eco1-PCNA interaction are defective in cohesion and inviable. Our study thus indicates that PCNA, a central matchmaker for replication-linked functions, is also crucially involved in the establishment of cohesion in S phase.
Collapse
Affiliation(s)
- George-Lucian Moldovan
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
29
|
|
30
|
Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I. Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 2005; 172:467-75. [PMID: 16157681 PMCID: PMC1456174 DOI: 10.1534/genetics.105.048363] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We analyzed whether sister chromatids are continuously aligned in meristematic and endopolyploid Arabidopsis interphase nuclei by studying sister-chromatid alignment at various chromosomal positions. FISH with individual BACs to flow-sorted 4C root and leaf nuclei frequently yielded more than two hybridization signals, indicating incomplete or absent sister-chromatid alignment. Up to 100% of 8C, 16C, and 32C nuclei showed no sister-chromatid alignment at defined positions. Simultaneous FISH with BACs from different chromosomal positions revealed more frequent sister-chromatid alignment in terminal than in midarm positions. Centromeric positions were mainly aligned up to a ploidy level of 16C but became separated or dispersed in 32C nuclei. DNA hypomethylation (of the whole genome) and transcriptional activity (at FWA gene position) did not impair sister-chromatid alignment. Only 6.1% of 4C leaf nuclei showed sister-chromatid separation of the entire chromosome 1 top arm territories. Homozygous transgenic tandem repeat (lac operator) arrays showing somatic homologous pairing more often than average euchromatic loci did not promote an increased frequency of sister-chromatid alignment. The high frequency of separated sister-chromatid arm positions in > or =4C nuclei suggests that sister-chromatid cohesion is variable, dynamic, and not obligatory along the entire chromosome arm in meristematic and differentiated Arabidopsis nuclei.
Collapse
Affiliation(s)
- Veit Schubert
- Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Bylund GO, Burgers PMJ. Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 2005; 25:5445-55. [PMID: 15964801 PMCID: PMC1156988 DOI: 10.1128/mcb.25.13.5445-5455.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The replication clamp PCNA is loaded around DNA by replication factor C (RFC) and functions in DNA replication and repair. Regulated unloading of PCNA during the progression and termination of DNA replication may require additional factors. Here we show that a Saccharomyces cerevisiae complex required for the establishment of sister chromatid cohesion functions as an efficient unloader of PCNA. Unloading requires ATP hydrolysis. This seven-subunit Ctf18-RFC complex consists of the four small subunits of RFC, together with Ctf18, Dcc1, and Ctf8. Ctf18-RFC was also a weak loader of PCNA onto naked template-primer DNA. However, when the single-stranded DNA template was coated by the yeast single-stranded DNA binding protein replication protein A (RPA) but not by a mutant form of RPA or a heterologous single-stranded DNA binding protein, both binding of Ctf18-RFC to substrate DNA and loading of PCNA were strongly inhibited, and unloading predominated. Neither yeast RFC itself nor two other related clamp loaders, containing either Rad24 or Elg1, catalyzed significant unloading of PCNA. The Dcc1 and Ctf8 subunits of Ctf18-RFC, while required for establishing sister chromatid cohesion in vivo, did not function specifically in PCNA unloading in vitro, thereby separating the functionality of the Ctf18-RFC complex into two distinct paths.
Collapse
Affiliation(s)
- Göran O Bylund
- Department of Biochemistry, Washington University School of Medicine, 660 S. Euclid, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
32
|
Skibbens RV. Unzipped and loaded: the role of DNA helicases and RFC clamp-loading complexes in sister chromatid cohesion. J Cell Biol 2005; 169:841-6. [PMID: 15955849 PMCID: PMC2171654 DOI: 10.1083/jcb.200503129] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 05/13/2005] [Indexed: 11/22/2022] Open
Abstract
It is well known that the products of chromosome replication are paired to ensure that the sisters segregate away from each other during mitosis. A key issue is how cells pair sister chromatids but preclude the catastrophic pairing of nonsister chromatids. The identification of both replication factor C and DNA helicases as critical for sister chromatid pairing has brought new insights into this fundamental process.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
33
|
Abstract
The sister chromatid cohesion essential for the bi-orientation of chromosomes on mitotic spindles depends on a multi-subunit complex called cohesin. This paper reviews the evidence that cohesin is directly responsible for holding sister DNAs together and considers how it might perform this function in the light of recent data on its structure.
Collapse
Affiliation(s)
- Kim Nasmyth
- IMP (Research Institute of Molecular Pathology), Dr Bohr-Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
34
|
Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM. Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 2004; 117:6435-45. [PMID: 15572404 DOI: 10.1242/jcs.01604] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Condensin is a protein complex associated with mitotic chromosomes that has been implicated in chromosome condensation. In vertebrates, two types of condensin complexes have recently been identified, called condensin I and II. Here, we show that in mammalian cells condensin II associates with chromatin in prophase, in contrast to condensin I which is cytoplasmic and can thus interact with chromosomes only after nuclear envelope breakdown. RNA interference experiments in conjunction with imaging of live and fixed cells revealed that condensin II is required for chromosome condensation in early prophase, whereas condensin I appears to be dispensable at this stage. By contrast, condensin I is required for the complete dissociation of cohesin from chromosome arms, for chromosome shortening and for normal timing of progression through prometaphase and metaphase, whereas normal condensin II levels are dispensable for these processes. After depletion of both condensin complexes, the onset of chromosome condensation is delayed until the end of prophase, but is then initiated rapidly before nuclear envelope breakdown. These results reveal that condensin II and I associate with chromosomes sequentially and have distinct functions in mitotic chromosome assembly.
Collapse
Affiliation(s)
- Toru Hirota
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
35
|
Abstract
Introduction
Collapse
Affiliation(s)
- David Sherratt
- Division of Molecular Genetics, Department of biochemistry, south Parks Road, Oxford OX1 3QU, UK
| | - Stephen West
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| |
Collapse
|