1
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024:1-26. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Burtt DG, Stern JC, Webster CR, Hofmann AE, Franz HB, Sutter B, Thorpe MT, Kite ES, Eigenbrode JL, Pavlov AA, House CH, Tutolo BM, Des Marais DJ, Rampe EB, McAdam AC, Malespin CA. Highly enriched carbon and oxygen isotopes in carbonate-derived CO 2 at Gale crater, Mars. Proc Natl Acad Sci U S A 2024; 121:e2321342121. [PMID: 39374395 PMCID: PMC11494307 DOI: 10.1073/pnas.2321342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δ13C) and oxygen (δ18O) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater. The carbon isotope values range from 72 ± 2‰ to 110 ± 3‰ Vienna Pee Dee Belemnite while the oxygen isotope values span from 59 ± 4‰ to 91 ± 4‰ Vienna Standard Mean Ocean Water (1 SE uncertainties). Notably, these values are isotopically heavy (13C- and 18O-enriched) relative to nearly every other Martian material. The extreme isotopic difference between the carbonates and other carbon- and oxygen-rich reservoirs on Mars cannot be reconciled by standard equilibrium carbonate-CO2 fractionation, thus requiring an alternative process during or prior to carbonate formation. This paper explores two processes capable of contributing to the isotopic enrichments: 1) evaporative-driven Rayleigh distillation and 2) kinetic isotope effects related to cryogenic precipitation. In isolation, each process cannot reproduce the observed carbonate isotope values; however, a combination of these processes represents the most likely source for the extreme isotopic enrichments.
Collapse
Affiliation(s)
- David G. Burtt
- NASA Postdoctoral Fellow, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Jennifer C. Stern
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | | | - Amy E. Hofmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | - Heather B. Franz
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Brad Sutter
- Jacobs Technology, Houston, TX77058
- NASA Johnson Space Center, Houston, TX77058
| | - Michael T. Thorpe
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
- University of Maryland/Goddard Space Flight/Center for Research and Exploration in Space and Science Technology (CRESST II), Greenbelt, MD20771
| | - Edwin S. Kite
- Department of Geophysical Sciences, University of Chicago, Chicago, IL60637
| | | | - Alexander A. Pavlov
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Christopher H. House
- Department of Geosciences, Pennsylvania State University, University Park, PA16802
| | - Benjamin M. Tutolo
- Department of Geoscience, University of Calgary, Calgary, ABT2N 1N4, Canada
| | | | | | - Amy C. McAdam
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Charles A. Malespin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| |
Collapse
|
3
|
Yang F, Xiong X. Carbon emissions, wastewater treatment and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171138. [PMID: 38402957 DOI: 10.1016/j.scitotenv.2024.171138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As a nexus of environmental pollution, fossil fuel consumption and the global warming, carbon emissions are critical in China's long-term environmental strategies. In the water cycle, carbon is released during wastewater discharge, wastewater treatment, and subsequent changes in aquatic ecosystems. To gain a comprehensive understanding of this entire process, we investigate the intricate connections using balanced panel data from 261 prefecture-level cities in China spanning the period from 2000 to 2020. Each sample is quantified using 48 features derived from hydrosphere, biosphere, anthroposphere, atmosphere, pedosphere and lithosphere. This paper contributes to the relevant studies in the following ways: Firstly, to analyze the basic interaction within the water cycle, we utilize Structural Equation Modeling (SEM). Our results indicate a weak linear relationship between wastewater treatment and carbon emissions. We also substantiate the crucial role of the aquatic ecosystems in carbon fixation. Secondly, in order to comprehend the intricate interactions within the Earth system, we employ eight machine learning models to predict carbon emissions. We observe that extremely randomized trees (ET) exhibit the highest predictive accuracy among these models. Thirdly, in interpreting the ET model, we utilize Explainable artificial intelligence (XAI) techniques, including Shapley Additive Explanations (SHAP) and Accumulated Local Effects (ALE). Our 3D-SHAP analysis reveals heterogeneity in the emission effects of wastewater treatment across different sub-groups, indicating that emissions are especially sensitive to increased wastewater treatment in agricultural and tourism cities. Furthermore, 3D-SHAP analysis of the aquatic ecosystems exhibits a series of spikes, signifying that aquatic plants will abruptly lose their carbon storage ability once the degradation of the aquatic ecosystems exceeds a certain threshold. Finally, our ALE evaluation, depicting the dispersion tendency of feature importance, identifies the uncertainty of wastewater carbon release in agricultural and tourism cities, while also affirming the vulnerability of the aquatic ecosystems.
Collapse
Affiliation(s)
- Fan Yang
- School of Economics and Management, Southeast University, Nanjing 211189, China.
| | - Xiong Xiong
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
4
|
Cockell CS, Wordsworth R, Whiteford N, Higgins PM. Minimum Units of Habitability and Their Abundance in the Universe. ASTROBIOLOGY 2021; 21:481-489. [PMID: 33513037 DOI: 10.1089/ast.2020.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the search for habitability is a much-vaunted objective in the study of planetary environments, the material requirements for an environment to be habitable can be met with relatively few ingredients. In this hypothesis paper, the minimum material requirements for habitability are first re-evaluated, necessarily based on life "as we know it." From this vantage point, we explore examples of the minimum number of material requirements for habitable conditions to arise in a planetary environment, which we illustrate with "minimum habitability diagrams." These requirements raise the hypothesis that habitable conditions may be common throughout the universe. If the hypothesis was accepted, then the discovery of life would remain an important discovery, but habitable conditions on their own would be an unremarkable feature of the material universe. We discuss how minimum units of habitability provide a parsimonious way to consider the minimum number of geological inferences about a planetary body, and the minimum number of atmospheric components that must be measured, for example in the case of exoplanets, to be able to make assessments of habitability.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Robin Wordsworth
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Niall Whiteford
- Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, UK
| | - Peter M Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, UK
| |
Collapse
|
5
|
Morozova D, Moeller R, Rettberg P, Wagner D. Enhanced Radiation Resistance of Methanosarcina soligelidi SMA-21, a New Methanogenic Archaeon Isolated from a Siberian Permafrost-Affected Soil in Direct Comparison to Methanosarcina barkeri. ASTROBIOLOGY 2015; 15:951-960. [PMID: 26544020 DOI: 10.1089/ast.2015.1319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Permafrost-affected soils are characterized by a high abundance and diversity of methanogenic communities, which are considered suitable model organisms for potential life on Mars. Methanogens from Siberian permafrost have been proven to be highly resistant against divers stress conditions such as subzero temperatures, desiccation, and simulated thermophysical martian conditions. Here, we studied the radiation resistance of the currently described new species Methanosarcina soligelidi SMA-21, which was isolated from a Siberian permafrost-affected soil, in comparison to Methanosarcina barkeri, which is used as a reference organism from a nonpermafrost soil environment. Both strains were exposed to solar UV and ionizing radiation to assess their limits of survival. Methanosarcina soligelidi exhibit an increase in radiation resistance to UV (2.5- to 13.8-fold) and ionizing radiation (46.6-fold) compared to M. barkeri. The F10 (UVC) and D10 (X-rays) values of M. soligelidi are comparable to values for the well-known, highly radioresistant species Deinococcus radiodurans. In contrast, the radiation response of M. barkeri was highly sensitive to UV and ionizing radiation comparably to Escherichia coli and other radiosensitive microorganisms. This study showed that species of the same genus respond differently to UV and ionizing radiation, which might reflect the adaptation of Methanosarcina soligelidi SMA-21 to the harsh environmental conditions of the permafrost habitat. KEY WORDS Methanogenic archaea-Environmental UV-Ionizing radiation-Permafrost-Radiation resistance-Mars.
Collapse
Affiliation(s)
- Daria Morozova
- 1 GFZ German Research Centre for Geosciences , Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, Potsdam, Germany
| | - Ralf Moeller
- 2 German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Research Group Astrobiology, Köln, Germany
| | - Petra Rettberg
- 2 German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Research Group Astrobiology, Köln, Germany
| | - Dirk Wagner
- 1 GFZ German Research Centre for Geosciences , Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, Potsdam, Germany
| |
Collapse
|
6
|
Telling J, Lacrampe-Couloume G, Sherwood Lollar B. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings. ASTROBIOLOGY 2013; 13:483-490. [PMID: 23683048 DOI: 10.1089/ast.2012.0915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.
Collapse
Affiliation(s)
- Jon Telling
- Department of Earth Sciences, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
7
|
Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 +/- 4 degrees C in a near-surface aqueous environment. Proc Natl Acad Sci U S A 2011; 108:16895-9. [PMID: 21969543 DOI: 10.1073/pnas.1109444108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite evidence for liquid water at the surface of Mars during the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether the surface of Mars was ever warmer than today. We address this problem by determining the precipitation temperature of secondary carbonate minerals preserved in the oldest known sample of Mars' crust--the approximately 4.1 billion-year-old meteorite Allan Hills 84001 (ALH84001). The formation environment of these carbonates, which are constrained to be slightly younger than the crystallization age of the rock (i.e., 3.9 to 4.0 billion years), has been poorly understood, hindering insight into the hydrologic and carbon cycles of earliest Mars. Using "clumped" isotope thermometry we find that the carbonates in ALH84001 precipitated at a temperature of approximately 18 °C, with water and carbon dioxide derived from the ancient Martian atmosphere. Furthermore, covarying carbonate carbon and oxygen isotope ratios are constrained to have formed at constant, low temperatures, pointing to deposition from a gradually evaporating, subsurface water body--likely a shallow aquifer (meters to tens of meters below the surface). Despite the mild temperatures, the apparently ephemeral nature of water in this environment leaves open the question of its habitability.
Collapse
|
8
|
Shaheen R, Abramian A, Horn J, Dominguez G, Sullivan R, Thiemens MH. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars. Proc Natl Acad Sci U S A 2010; 107:20213-8. [PMID: 21059939 PMCID: PMC2996665 DOI: 10.1073/pnas.1014399107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.
Collapse
Affiliation(s)
- R. Shaheen
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - A. Abramian
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - J. Horn
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - G. Dominguez
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - R. Sullivan
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Mark H. Thiemens
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
9
|
Leach S, Smith IWM, Cockell CS. Introduction: Conditions for the emergence of life on the early Earth. Philos Trans R Soc Lond B Biol Sci 2006; 361:1675-9. [PMID: 17008208 PMCID: PMC1664687 DOI: 10.1098/rstb.2006.1895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sydney Leach
- LERMA, Observatoire de Paris-Meudon, 92195 Meudon, France.
| | | | | |
Collapse
|
10
|
Jortner J. Conditions for the emergence of life on the early Earth: summary and reflections. Philos Trans R Soc Lond B Biol Sci 2006; 361:1877-91. [PMID: 17008225 PMCID: PMC1664691 DOI: 10.1098/rstb.2006.1909] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review attempts to situate the emergence of life on the early Earth within the scientific issues of the operational and mechanistic description of life, the conditions and constraints of prebiotic chemistry, together with bottom-up molecular fabrication and biomolecular nanofabrication and top-down miniaturization approaches to the origin of terrestrial life.
Collapse
Affiliation(s)
- Joshua Jortner
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| |
Collapse
|