1
|
Moreno-Mayar JV, Sousa da Mota B, Higham T, Klemm S, Gorman Edmunds M, Stenderup J, Iraeta-Orbegozo M, Laborde V, Heyer E, Torres Hochstetter F, Friess M, Allentoft ME, Schroeder H, Delaneau O, Malaspinas AS. Ancient Rapanui genomes reveal resilience and pre-European contact with the Americas. Nature 2024; 633:389-397. [PMID: 39261618 PMCID: PMC11390480 DOI: 10.1038/s41586-024-07881-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/26/2024] [Indexed: 09/13/2024]
Abstract
Rapa Nui (also known as Easter Island) is one of the most isolated inhabited places in the world. It has captured the imagination of many owing to its archaeological record, which includes iconic megalithic statues called moai1. Two prominent contentions have arisen from the extensive study of Rapa Nui. First, the history of the Rapanui has been presented as a warning tale of resource overexploitation that would have culminated in a major population collapse-the 'ecocide' theory2-4. Second, the possibility of trans-Pacific voyages to the Americas pre-dating European contact is still debated5-7. Here, to address these questions, we reconstructed the genomic history of the Rapanui on the basis of 15 ancient Rapanui individuals that we radiocarbon dated (1670-1950 CE) and whole-genome sequenced (0.4-25.6×). We find that these individuals are Polynesian in origin and most closely related to present-day Rapanui, a finding that will contribute to repatriation efforts. Through effective population size reconstructions and extensive population genetics simulations, we reject a scenario involving a severe population bottleneck during the 1600s, as proposed by the ecocide theory. Furthermore, the ancient and present-day Rapanui carry similar proportions of Native American admixture (about 10%). Using a Bayesian approach integrating genetic and radiocarbon dates, we estimate that this admixture event occurred about 1250-1430 CE.
Collapse
Affiliation(s)
- J Víctor Moreno-Mayar
- Globe Institute, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tom Higham
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Science (HEAS) Network, University of Vienna, Vienna, Austria
| | - Signe Klemm
- Globe Institute, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Stenderup
- Globe Institute, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Miren Iraeta-Orbegozo
- Globe Institute, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Véronique Laborde
- Direction Générale Déléguée aux Collections, Muséum national d'Histoire naturelle, Paris, France
| | - Evelyne Heyer
- Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme, Paris, France
| | | | - Martin Friess
- Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme, Paris, France
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
2
|
Arrieta-Bolaños E, Hernández-Zaragoza DI, Barquera R. An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet 2023; 14:866407. [PMID: 37035735 PMCID: PMC10076764 DOI: 10.3389/fgene.2023.866407] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
HLA frequencies show widespread variation across human populations. Demographic factors as well as selection are thought to have shaped HLA variation across continents. In this study, a worldwide comparison of HLA class I and class II diversity was carried out. Multidimensional scaling techniques were applied to 50 HLA-A and HLA-B (class I) as well as 13 HLA-DRB1 (class II) first-field frequencies in 200 populations from all continents. Our results confirm a strong effect of geography on the distribution of HLA class I allele groups, with principal coordinates analysis closely resembling geographical location of populations, especially those of Africa-Eurasia. Conversely, class II frequencies stratify populations along a continuum of differentiation less clearly correlated to actual geographic location. Double clustering analysis revealed finer intra-continental sub-clusters (e.g., Northern and Western Europe vs. South East Europe, North Africa and Southwest Asia; South and East Africa vs. West Africa), and HLA allele group patterns characteristic of these clusters. Ancient (Austronesian expansion) and more recent (Romani people in Europe) migrations, as well as extreme differentiation (Taiwan indigenous peoples, Native Americans), and interregional gene flow (Sámi, Egyptians) are also reflected by the results. Barrier analysis comparing DST and geographic location identified genetic discontinuities caused by natural barriers or human behavior explaining inter and intra-continental HLA borders for class I and class II. Overall, a progressive reduction in HLA diversity from African to Oceanian and Native American populations is noted. This analysis of HLA frequencies in a unique set of worldwide populations confirms previous findings on the remarkable similarity of class I frequencies to geography, but also shows a more complex development for class II, with implications for both human evolutionary studies and biomedical research.
Collapse
Affiliation(s)
- Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Heidelberg, Germany
- *Correspondence: Esteban Arrieta-Bolaños,
| | | | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
| |
Collapse
|
3
|
Partial-AZFc deletions in Chilean men with primary spermatogenic impairment: gene dosage and Y-chromosome haplogroups. J Assist Reprod Genet 2020; 37:3109-3119. [PMID: 33034826 DOI: 10.1007/s10815-020-01957-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To investigate the association of partial-AZFc deletions in Chilean men with primary spermatogenic failure and their testicular histopathological phenotypes, analyzing the contribution of DAZ dosage, CDY1 copies, and Y-chromosome haplogroups. SUBJECTS AND METHODS We studied 479 Chilean men: 334 infertile patients with histological examination (233 cases with spermatogenic defects and 101 normal spermatogenesis, obstructive controls, OC), and 145 normozoospermic controls (NC). AZFc subdeletions were detected by single-tagged sequences and single nucleotide variants analysis. DAZ-copy number was quantified by real-time qPCR. Y-chromosome haplogroups (Y-hg) were hierarchically genotyped through 16 biallelic-markers. RESULTS The prevalence of AZFc-partial deletions was increased in cases (6%) compared with NC (1.4%) (P = 0.035). There was no difference between 143 Sertoli-cell only syndrome, 35 maturation arrest, or 35 mix atrophy patients and controls. However, gr/gr deletions were more frequent in 16 subjects with hypospermatogenesis compared with NC (P = 0.003) and OC (P = 0.013). Y-hg R was the most prevalent (~ 50%), but decreased among gr/gr deletions (21%, P = 0.03). The prevalence of Y-hg M increased in cases versus controls, both in total and non-deleted men (3.9 and 3.7% versus 0.4%, P = 0.009 and P = 0.016, respectively). Among gr/gr deletions, Y-hg H increased compared with non-deleted men (14.3% versus 0.4%, P = 0.0047). CONCLUSION Partial-AZFc deletions in a Chilean admixed population are associated with secretory azo/oligozoospermia and might have a role in the development of hypospermatogenesis. Low represented haplogroups, Y-hg M and Y-hg H, show an association with the occurrence of spermatogenic failure and gr/gr deletions respectively; however, additional studies are required.
Collapse
|
4
|
Ioannidis AG, Blanco-Portillo J, Sandoval K, Hagelberg E, Miquel-Poblete JF, Moreno-Mayar JV, Rodríguez-Rodríguez JE, Quinto-Cortés CD, Auckland K, Parks T, Robson K, Hill AVS, Avila-Arcos MC, Sockell A, Homburger JR, Wojcik GL, Barnes KC, Herrera L, Berríos S, Acuña M, Llop E, Eng C, Huntsman S, Burchard EG, Gignoux CR, Cifuentes L, Verdugo RA, Moraga M, Mentzer AJ, Bustamante CD, Moreno-Estrada A. Native American gene flow into Polynesia predating Easter Island settlement. Nature 2020; 583:572-577. [PMID: 32641827 PMCID: PMC8939867 DOI: 10.1038/s41586-020-2487-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/22/2020] [Indexed: 11/08/2022]
Abstract
The possibility of voyaging contact between prehistoric Polynesian and Native American populations has long intrigued researchers. Proponents have pointed to the existence of New World crops, such as the sweet potato and bottle gourd, in the Polynesian archaeological record, but nowhere else outside the pre-Columbian Americas1-6, while critics have argued that these botanical dispersals need not have been human mediated7. The Norwegian explorer Thor Heyerdahl controversially suggested that prehistoric South American populations had an important role in the settlement of east Polynesia and particularly of Easter Island (Rapa Nui)2. Several limited molecular genetic studies have reached opposing conclusions, and the possibility continues to be as hotly contested today as it was when first suggested8-12. Here we analyse genome-wide variation in individuals from islands across Polynesia for signs of Native American admixture, analysing 807 individuals from 17 island populations and 15 Pacific coast Native American groups. We find conclusive evidence for prehistoric contact of Polynesian individuals with Native American individuals (around AD 1200) contemporaneous with the settlement of remote Oceania13-15. Our analyses suggest strongly that a single contact event occurred in eastern Polynesia, before the settlement of Rapa Nui, between Polynesian individuals and a Native American group most closely related to the indigenous inhabitants of present-day Colombia.
Collapse
Affiliation(s)
- Alexander G Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Mexico.
| | - Javier Blanco-Portillo
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Mexico
| | - Karla Sandoval
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Mexico
| | - Erika Hagelberg
- Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | - Consuelo D Quinto-Cortés
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Mexico
| | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tom Parks
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kathryn Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - María C Avila-Arcos
- International Laboratory for Human Genome Research (LIIGH), UNAM Juriquilla, Queretaro, Mexico
| | - Alexandra Sockell
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, USA
| | - Julian R Homburger
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, USA
| | - Genevieve L Wojcik
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO, USA
| | - Luisa Herrera
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Soledad Berríos
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mónica Acuña
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Elena Llop
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Celeste Eng
- Program in Pharmaceutical Sciences and Pharmacogenomics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Program in Pharmaceutical Sciences and Pharmacogenomics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Program in Pharmaceutical Sciences and Pharmacogenomics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher R Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO, USA
| | - Lucía Cifuentes
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ricardo A Verdugo
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Basic-Applied Oncology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Moraga
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Anthropology, Faculty of Social Sciences, University of Chile, Santiago, Chile
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Carlos D Bustamante
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, CINVESTAV, Irapuato, Mexico.
| |
Collapse
|
5
|
Rull V, Giralt S. Editorial: Palaeoecology of Easter Island: Natural and Anthropogenic Drivers of Ecological Change. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Genetic Ancestry of Rapanui before and after European Contact. Curr Biol 2017; 27:3209-3215.e6. [PMID: 29033334 DOI: 10.1016/j.cub.2017.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/21/2017] [Accepted: 09/13/2017] [Indexed: 11/22/2022]
Abstract
The origins and lifeways of the inhabitants of Rapa Nui (Easter Island), a remote island in the southeast Pacific Ocean, have been debated for generations. Archaeological evidence substantiates the widely accepted view that the island was first settled by people of Polynesian origin, as late as 1200 CE [1-4]. What remains controversial, however, is the nature of events in the island's population history prior to the first historic contact with Europeans in 1722 CE. Purported contact between Rapa Nui and South America is particularly contentious, and recent studies have reported genetic evidence for Native American admixture in present-day indigenous inhabitants of Rapa Nui [5-8]. Statistical modeling has suggested that this genetic contribution might have occurred prior to European contact [6]. Here we directly test the hypothesis that the Native American admixture of the current Rapa Nui population predates the arrival of Europeans with a paleogenomic analysis of five individual samples excavated from Ahu Nau Nau, Anakena, dating to pre- and post-European contact, respectively. Complete mitochondrial genomes and low-coverage autosomal genomes show that the analyzed individuals fall within the genetic diversity of present-day and ancient Polynesians, and we can reject the hypothesis that any of these individuals had substantial Native American ancestry. Our data thus suggest that the Native American ancestry in contemporary Easter Islanders was not present on the island prior to European contact and may thus be due to events in more recent history.
Collapse
|
7
|
Thorsby E. Genetic Evidence for a Contribution of Native Americans to the Early Settlement of Rapa Nui (Easter Island). Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Watrin L, Ghawché F, Larre P, Neau JP, Mathis S, Fournier E. Guillain-Barré Syndrome (42 Cases) Occurring During a Zika Virus Outbreak in French Polynesia. Medicine (Baltimore) 2016; 95:e3257. [PMID: 27057874 PMCID: PMC4998790 DOI: 10.1097/md.0000000000003257] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Zika virus (transmitted by mosquitoes) reached French Polynesia for the first time in 2013, leading to an epidemic affecting 10% of the total population. So far, it has not been known to induce any neurological complications, but, a few weeks after the outbreak, an unexpectedly high number of 42 patients presented with Guillain-Barré syndrome.We report the clinical and electrophysiological characteristics of this series. Males predominated with a sex ratio of 2.82 (mean age: 46). All patients (except 2) were native Polynesian. At admission, 55% were able to walk unaided against 38% at nadir, 24% had swallowing troubles (nadir: 45%), 74% had motor weakness of the limbs (nadir: 86%) and deep tendon reflexes were diminished or not found in the vast majority of patients. Mean duration of the progressive phase and of the plateau phase was respectively 7 and 9 days. Thirty-eight percent of the patients were admitted in intensive care unit and 10 patients underwent tracheotomy. Nerve electrophysiological studies at admission showed marked distal motor conduction alterations, which had almost completely disappeared at the 4th month; this pattern was more suggestive of acute motor axonal neuropathy (AMAN) than of acute inflammatory demyelinating polyneuropathy (AIDP). Lumbar puncture showed elevated proteins in 90% of the cases, with cell count always inferior to 50/μL.This epidemic raises several questions, such as the potential existence of interactions between Zika virus and Polynesian HLA system and/or the consequences of several recombination events of this virus. This situation should call for increased vigilance, especially in countries where Aedes mosquitoes are present.
Collapse
Affiliation(s)
- Louise Watrin
- From the Department of Neurology (LW, J-PN, SM), Poitiers University Hospital Center, Poitiers, France; Department of Neurology (FG, PL), French Polynesia Hospital Center, Papeete, Tahiti, French Polynesia; and Department of Clinical Neurophysiology (EF), La Pitié-Salpêtrière University Hospital Center, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Bd de l'Hôpital, Paris cedex, France
| | | | | | | | | | | |
Collapse
|
9
|
Rull V, Cañellas-Boltà N, Margalef O, Pla-Rabes S, Sáez A, Giralt S. Three Millennia of Climatic, Ecological, and Cultural Change on Easter Island: An Integrative Overview. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Mezzavilla M, Geppert M, Tyler-Smith C, Roewer L, Xue Y. Insights into the origin of rare haplogroup C3* Y chromosomes in South America from high-density autosomal SNP genotyping. Forensic Sci Int Genet 2014; 15:115-20. [PMID: 25435155 PMCID: PMC4312352 DOI: 10.1016/j.fsigen.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/29/2014] [Accepted: 11/01/2014] [Indexed: 11/24/2022]
Abstract
Revisited the previous discovery of a rare Y haplogroup in two Ecuador populations. Hypotheses for the origin of the haplogroup tested with autosomal SNP genotype data. We favoured one of the three hypotheses, ‘founder plus drift’.
The colonization of Americas is thought to have occurred 15–20 thousand years ago (Kya), with little or no subsequent migration into South America until the European expansions beginning 0.5 Kya. Recently, however, haplogroup C3* Y chromosomes were discovered in two nearby Native American populations from Ecuador. Since this haplogroup is otherwise nearly absent from the Americas but is common in East Asia, and an archaeological link between Ecuador and Japan is known from 6 Kya, an additional migration 6 Kya was suggested. Here, we have generated high-density autosomal SNP genotypes from the Ecuadorian populations and compared them with genotypes from East Asia and elsewhere to evaluate three hypotheses: a recent migration from Japan, a single pulse of migration from Japan 6 Kya, and no migration after the First Americans. First, using forward-time simulations and an appropriate demographic model, we investigated our power to detect both ancient and recent gene flow at different levels. Second, we analyzed 207,321 single nucleotide polymorphisms from 16 Ecuadorian individuals, comparing them with populations from the HGDP panel using descriptive and formal tests for admixture. Our simulations revealed good power to detect recent admixture, and that ≥5% admixture 6 Kya ago could be detected. However, in the experimental data we saw no evidence of gene flow from Japan to Ecuador. In summary, we can exclude recent migration and probably admixture 6 Kya as the source of the C3* Y chromosomes in Ecuador, and thus suggest that they represent a rare founding lineage lost by drift elsewhere.
Collapse
Affiliation(s)
- Massimo Mezzavilla
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; Medical Genetics, Department of Reproductive Sciences and Development, IRCCS-Burlo Garofolo, University of Trieste, Trieste, Italy
| | - Maria Geppert
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, Berlin, Germany
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, Berlin, Germany
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
11
|
Tyler-Smith C. Human Genetics: Pre-Columbian Pacific Contact. Curr Biol 2014; 24:R1038-40. [DOI: 10.1016/j.cub.2014.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Moreno-Mayar JV, Rasmussen S, Seguin-Orlando A, Rasmussen M, Liang M, Flåm ST, Lie BA, Gilfillan GD, Nielsen R, Thorsby E, Willerslev E, Malaspinas AS. Genome-wide ancestry patterns in Rapanui suggest pre-European admixture with Native Americans. Curr Biol 2014; 24:2518-25. [PMID: 25447991 DOI: 10.1016/j.cub.2014.09.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/29/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rapa Nui (Easter Island), located in the easternmost corner of the Polynesian Triangle, is one of the most isolated locations on the planet inhabited by humans. Archaeological and genetic evidence suggests that the island was first colonized by Polynesians around AD 1200, during their eastward expansion. Although it remains contentious whether Polynesians reached South America, suggestive evidence has been brought forward supporting the possibility of Native American contact prior to the European "discovery" of the island in AD 1722. RESULTS We generated genome-wide data for 27 Rapanui. We found a mostly Polynesian ancestry among Rapanui and detected genome-wide patterns consistent with Native American and European admixture. By considering the distribution of local ancestry tracts of eight unrelated Rapanui, we found statistical support for Native American admixture dating to AD 1280-1495 and European admixture dating to AD 1850-1895. CONCLUSIONS These genetic results can be explained by one or more pre-European trans-Pacific contacts.
Collapse
Affiliation(s)
- J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen K, Denmark
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet 208, 2800 Kongens Lyngby, Denmark
| | | | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen K, Denmark; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mason Liang
- Center for Theoretical Evolutionary Genomics, Department of Integrative Biology and Department of Statistics, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424 Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424 Oslo, Norway
| | - Gregor Duncan Gilfillan
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424 Oslo, Norway
| | - Rasmus Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen K, Denmark; Center for Theoretical Evolutionary Genomics, Department of Integrative Biology and Department of Statistics, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| | - Erik Thorsby
- Department of Immunology, University of Oslo and Oslo University Hospital, 0424 Oslo, Norway
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen K, Denmark.
| | - Anna-Sapfo Malaspinas
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen K, Denmark.
| |
Collapse
|
13
|
Arnaiz-Villena A, Vargas-Alarcón G, Areces C, Enríquez-de-Salamanca M, Abd-El-Fatah-Khalil S, Fernández-Honrado M, Marco J, Martín-Villa JM, Rey D. Mixtec Mexican Amerindians: an HLA Alleles Study for America Peopling, Pharmacogenomics and Transplantation. Immunol Invest 2014; 43:738-55. [PMID: 25254939 DOI: 10.3109/08820139.2014.926369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Nemat-Gorgani N, Edinur HA, Hollenbach JA, Traherne JA, Dunn PPJ, Chambers GK, Parham P, Norman PJ. KIR diversity in Māori and Polynesians: populations in which HLA-B is not a significant KIR ligand. Immunogenetics 2014; 66:597-611. [PMID: 25139336 DOI: 10.1007/s00251-014-0794-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 12/25/2022]
Abstract
HLA class I molecules and killer cell immunoglobulin-like receptors (KIR) form a diverse system of ligands and receptors that individualize human immune systems in ways that improve the survival of individuals and populations. Human settlement of Oceania by island-hopping East and Southeast Asian migrants started ~3,500 years ago. Subsequently, New Zealand was reached ~750 years ago by ancestral Māori. To examine how this history impacted KIR and HLA diversity, and their functional interaction, we defined at high resolution the allelic and haplotype diversity of the 13 expressed KIR genes in 49 Māori and 34 Polynesians. Eighty KIR variants, including four 'new' alleles, were defined, as were 35 centromeric and 22 telomeric KIR region haplotypes, which combine to give >50 full-length KIR haplotypes. Two new and divergent variant KIR form part of a telomeric KIR haplotype, which appears derived from Papua New Guinea and was probably obtained by the Asian migrants en route to Polynesia. Māori and Polynesian KIR are very similar, but differ significantly from African, European, Japanese, and Amerindian KIR. Māori and Polynesians have high KIR haplotype diversity with corresponding allotype diversity being maintained throughout the KIR locus. Within the population, each individual has a unique combination of HLA class I and KIR. Characterizing Māori and Polynesians is a paucity of HLA-B allotypes recognized by KIR. Compensating for this deficiency are high frequencies (>50 %) of HLA-A allotypes recognized by KIR. These HLA-A allotypes are ones that modern humans likely acquired from archaic humans at a much earlier time.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Edinur H, Dunn P, Hammond L, Selwyn C, Brescia P, Askar M, Reville P, Velickovic Z, Lea R, Chambers G. HLA and MICA polymorphism in Polynesians and New Zealand Maori: Implications for ancestry and health. Hum Immunol 2013; 74:1119-29. [DOI: 10.1016/j.humimm.2013.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 11/27/2022]
|
16
|
Identification of Polynesian mtDNA haplogroups in remains of Botocudo Amerindians from Brazil. Proc Natl Acad Sci U S A 2013; 110:6465-9. [PMID: 23576724 DOI: 10.1073/pnas.1217905110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a consensus that modern humans arrived in the Americas 15,000-20,000 y ago during the Late Pleistocene, most probably from northeast Asia through Beringia. However, there is still debate about the time of entry and number of migratory waves, including apparent inconsistencies between genetic and morphological data on Paleoamericans. Here we report the identification of mitochondrial sequences belonging to haplogroups characteristic of Polynesians in DNA extracted from ancient skulls of the now extinct Botocudo Indians from Brazil. The identification of these two Polynesian haplogroups was confirmed in independent replications in Brazil and Denmark, ensuring reliability of the data. Parallel analysis of 12 other Botocudo individuals yielded only the well-known Amerindian mtDNA haplogroup C1. Potential scenarios to try to help understand these results are presented and discussed. The findings of this study may be relevant for the understanding of the pre-Columbian and/or post-Columbian peopling of the Americas.
Collapse
|
17
|
Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. Proc Natl Acad Sci U S A 2013; 110:2205-10. [PMID: 23341603 DOI: 10.1073/pnas.1211049110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The history of sweet potato in the Pacific has long been an enigma. Archaeological, linguistic, and ethnobotanical data suggest that prehistoric human-mediated dispersal events contributed to the distribution in Oceania of this American domesticate. According to the "tripartite hypothesis," sweet potato was introduced into Oceania from South America in pre-Columbian times and was then later newly introduced, and diffused widely across the Pacific, by Europeans via two historically documented routes from Mexico and the Caribbean. Although sweet potato is the most convincing example of putative pre-Columbian connections between human occupants of Polynesia and South America, the search for genetic evidence of pre-Columbian dispersal of sweet potato into Oceania has been inconclusive. Our study attempts to fill this gap. Using complementary sets of markers (chloroplast and nuclear microsatellites) and both modern and herbarium samples, we test the tripartite hypothesis. Our results provide strong support for prehistoric transfer(s) of sweet potato from South America (Peru-Ecuador region) into Polynesia. Our results also document a temporal shift in the pattern of distribution of genetic variation in sweet potato in Oceania. Later reintroductions, accompanied by recombination between distinct sweet potato gene pools, have reshuffled the crop's initial genetic base, obscuring primary patterns of diffusion and, at the same time, giving rise to an impressive number of local variants. Moreover, our study shows that phenotypes, names, and neutral genes do not necessarily share completely parallel evolutionary histories. Multidisciplinary approaches, thus, appear necessary for accurate reconstruction of the intertwined histories of plants and humans.
Collapse
|
18
|
Altmann DM, Balloux F, Boyton RJ. Diverse approaches to analysing the history of human and pathogen evolution: how to tell the story of the past 70 000 years. Philos Trans R Soc Lond B Biol Sci 2012; 367:765-9. [PMID: 22312043 DOI: 10.1098/rstb.2011.0318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The meeting 'Human evolution, migration and history revealed by genetics, immunity and infection', along with the follow-on satellite meeting at the Kavli Centre over the subsequent two days, brought together diverse talents. The aim was to see if new insights could be gained by bringing together those who have interests in the past 50-100 000 years of human history, overlaying the perspectives of palaeogeneticists, anthropologists, human geneticists, pathogen geneticists, immunologists, disease modellers, linguists, immunogeneticists, historians and archaeologists. It rapidly became clear that while all may agree on the broad brush-strokes including 'out-of-Africa' and the general approximations of timelines, diverse approaches may often suggest somewhat different ways of telling the story.
Collapse
Affiliation(s)
- D M Altmann
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, London, UK.
| | | | | |
Collapse
|
19
|
Abstract
As the immunobiological function of the HLA (human leucocyte antigen) class I and II molecules was revealed, we have seen an explosive development of the HLA field. Today, the HLA complex occupies a central position in basic and clinical immunology. In this Opinion article, I will briefly discuss some challenges which in my opinion are more important than others in the near future of HLA, with a focus on products of the classical HLA class I and II genes. Matching for HLA antigens will continue to be of importance in organ and hematopoietic stem cell transplantations. In the latter field, induction of graft-versus-leukemia effects will receive greater attention, where HLA will play a central role. It is anticipated that we will see an extensive development in our knowledge of the etiology and pathogenesis of autoimmune diseases, where some HLA class I and II genes by far are the strongest predisposing genes. To predict and prevent autoimmune diseases will be a major challenge for the HLA field in the future. HLA will also be of increasing importance in pharmacogenomics, vaccinations and anthropology. Together, this will leave the HLA field with many new challenges and opportunities, which in the future will require more focus on functional aspects of the immunogenetics of HLA.
Collapse
Affiliation(s)
- E Thorsby
- Institute of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway.
| |
Collapse
|