1
|
Zhang H, Hu H, Wu S, Perrett S. Effect of evolution of the C-terminal region on chaperone activity of Hsp70. Protein Sci 2023; 32:e4549. [PMID: 36533311 PMCID: PMC9798248 DOI: 10.1002/pro.4549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Dynamic interdomain interactions within the Hsp70 protein is the basis for the allosteric and functional properties of Hsp70s. While Hsp70s are generally conserved in terms of structure, allosteric behavior, and some overlapping functions, Hsp70s also contain variable sequence regions which are related to distinct functions. In the Hsp70 sequence, the part with the greatest sequence variation is the C-terminal α-helical lid subdomain of substrate-binding domain (SBDα) together with the intrinsically disordered region. Dynamic interactions between the SBDα and β-sandwich substrate-binding subdomain (SBDβ) contribute to the chaperone functions of Hsp70s by tuning kinetics of substrate binding. To investigate how the C-terminal region of Hsp70 has evolved from prokaryotic to eukaryotic organisms, we tested whether this region can be exchanged among different Hsp70 members to support basic chaperone functions. We found that this region from eukaryotic Hsp70 members cannot substitute for the same region in Escherichia coli DnaK to facilitate normal chaperone activity of DnaK. In contrast, this region from E. coli DnaK and Saccharomyces cerevisiae Hsp70 (Ssa1 and Ssa4) can partially support some roles of human stress inducible Hsp70 (hHsp70) and human cognate Hsp70 (hHsc70). Our results indicate that the C-terminal region from eukaryotic Hsp70 members cannot properly support SBDα-SBDβ interactions in DnaK, but this region from DnaK/Ssa1/Ssa4 can still form some SBDα-SBDβ interactions in hHsp70 or hHsc70, which suggests that the mode for SBDα-SBDβ interactions is different in prokaryotic and eukaryotic Hsp70 members. This study provides new insight in the divergency among different Hsp70 homologs and the evolution of Hsp70s.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Medical Molecular Biology, School of Basic MedicineInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Huimin Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Amin L, Harris DA. Aβ receptors specifically recognize molecular features displayed by fibril ends and neurotoxic oligomers. Nat Commun 2021; 12:3451. [PMID: 34103486 PMCID: PMC8187732 DOI: 10.1038/s41467-021-23507-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Several cell-surface receptors for neurotoxic forms of amyloid-β (Aβ) have been described, but their molecular interactions with Aβ assemblies and their relative contributions to mediating Alzheimer's disease pathology have remained uncertain. Here, we used super-resolution microscopy to directly visualize Aβ-receptor interactions at the nanometer scale. We report that one documented Aβ receptor, PrPC, specifically inhibits the polymerization of Aβ fibrils by binding to the rapidly growing end of each fibril, thereby blocking polarized elongation at that end. PrPC binds neurotoxic oligomers and protofibrils in a similar fashion, suggesting that it may recognize a common, end-specific, structural motif on all of these assemblies. Finally, two other Aβ receptors, FcγRIIb and LilrB2, affect Aβ fibril growth in a manner similar to PrPC. Our results suggest that receptors may trap Aβ oligomers and protofibrils on the neuronal surface by binding to a common molecular determinant on these assemblies, thereby initiating a neurotoxic signal.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
4
|
Gong W, Hu W, Xu L, Wu H, Wu S, Zhang H, Wang J, Jones GW, Perrett S. The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. J Biol Chem 2018; 293:17663-17675. [PMID: 30228181 DOI: 10.1074/jbc.ra118.002691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/30/2018] [Indexed: 01/16/2023] Open
Abstract
The allosteric coupling of the highly conserved nucleotide- and substrate-binding domains of Hsp70 has been studied intensively. In contrast, the role of the disordered, highly variable C-terminal region of Hsp70 remains unclear. In many eukaryotic Hsp70s, the extreme C-terminal EEVD motif binds to the tetratricopeptide-repeat domains of Hsp70 co-chaperones. Here, we discovered that the TVEEVD sequence of Saccharomyces cerevisiae cytoplasmic Hsp70 (Ssa1) functions as a SUMO-interacting motif. A second C-terminal motif of ∼15 amino acids between the α-helical lid and the extreme C terminus, previously identified in bacterial and eukaryotic organellar Hsp70s, is known to enhance chaperone function by transiently interacting with folding clients. Using structural analysis, interaction studies, fibril formation assays, and in vivo functional assays, we investigated the individual contributions of the α-helical bundle and the C-terminal disordered region of Ssa1 in the inhibition of fibril formation of the prion protein Ure2. Our results revealed that although the α-helical bundle of the Ssa1 substrate-binding domain (SBDα) does not directly bind to Ure2, the SBDα enhances the ability of Hsp70 to inhibit fibril formation. We found that a 20-residue C-terminal motif in Ssa1, containing GGAP and GGAP-like tetrapeptide repeats, can directly bind to Ure2, the Hsp40 co-chaperone Ydj1, and α-synuclein, but not to the SUMO-like protein SMT3 or BSA. Deletion or substitution of the Ssa1 GGAP motif impaired yeast cell tolerance to temperature and cell-wall damage stress. This study highlights that the C-terminal GGAP motif of Hsp70 is important for substrate recognition and mediation of the heat shock response.
Collapse
Affiliation(s)
- Weibin Gong
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanhui Hu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, W23 W6R7, Kildare, Ireland
| | - Huiwen Wu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, W23 W6R7, Kildare, Ireland.
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wright MA, Aprile FA, Bellaiche MMJ, Michaels TCT, Müller T, Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Cooperative Assembly of Hsp70 Subdomain Clusters. Biochemistry 2018; 57:3641-3649. [PMID: 29763298 PMCID: PMC6202011 DOI: 10.1021/acs.biochem.8b00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behavior, as well as the role of oligomerization in the activity of molecular chaperones in inhibiting protein aggregation, have proven to be difficult to define. Here, we demonstrate direct measurements under native conditions of the changes in the average oligomer populations of a chaperone system as a function of concentration and time and thus determine the thermodynamic and kinetic parameters governing the self-assembly process. We access this self-assembly behavior in real time under native-like conditions by monitoring the changes in the micrometer-scale diffusion of the different complexes in time and space using a microfluidic platform. Using this approach, we find that the oligomerization mechanism of the Hsp70 subdomain occurs in a cooperative manner and involves structural constraints that limit the size of the species formed beyond the limits imposed by mass balance. These results illustrate the ability of microfluidic methods to probe polydisperse protein self-assembly in real time in solution and to shed light on the nature and dynamics of oligomerization processes.
Collapse
Affiliation(s)
- Maya A Wright
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Fluidic Analytics Ltd. , Cambridge , U.K
| | - Francesco A Aprile
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Mathias M J Bellaiche
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Thomas C T Michaels
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Thomas Müller
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Fluidic Analytics Ltd. , Cambridge , U.K
| | - Paolo Arosio
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1, ETH Hönggerberg, HCI F 105 , 8093 Zurich , Switzerland
| | - Michele Vendruscolo
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Christopher M Dobson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Cavendish Laboratory, Department of Physics , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| |
Collapse
|
6
|
Kundel F, De S, Flagmeier P, Horrocks MH, Kjaergaard M, Shammas SL, Jackson SE, Dobson CM, Klenerman D. Hsp70 Inhibits the Nucleation and Elongation of Tau and Sequesters Tau Aggregates with High Affinity. ACS Chem Biol 2018; 13:636-646. [PMID: 29300447 PMCID: PMC6374916 DOI: 10.1021/acschembio.7b01039] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
As a key player of
the protein quality control network of the cell,
the molecular chaperone Hsp70 inhibits the aggregation of the amyloid
protein tau. To date, the mechanism of this inhibition and the tau
species targeted by Hsp70 remain unknown. This is partly due to the
inherent difficulty of studying amyloid aggregates because of their
heterogeneous and transient nature. Here, we used ensemble and single-molecule
fluorescence measurements to dissect how Hsp70 counteracts the self-assembly
process of the K18 ΔK280 tau variant. We found that Hsp70 blocks
the early stages of tau aggregation by suppressing the formation of
tau nuclei. Additionally, Hsp70 sequesters oligomers and mature tau
fibrils with nanomolar affinity into a protective complex, efficiently
neutralizing their ability to damage membranes and seed further tau
aggregation. Our results provide novel insights into the molecular
mechanisms by which the chaperone Hsp70 counteracts the formation,
propagation, and toxicity of tau aggregates.
Collapse
Affiliation(s)
- Franziska Kundel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Suman De
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick Flagmeier
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Mathew H. Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Magnus Kjaergaard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah L. Shammas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sophie E. Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ, Wu S, Perrett S. Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. J Am Chem Soc 2018; 140:2493-2503. [PMID: 29357227 PMCID: PMC5880511 DOI: 10.1021/jacs.7b10439] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The self-assembly of polypeptides
into amyloid structures is associated
with a range of increasingly prevalent neurodegenerative diseases
as well as with a select set of functional processes in biology. The
phenomenon of self-assembly results in species with dramatically different
sizes, from small oligomers to large fibrils; however, the kinetic
relationship between these species is challenging to characterize.
In the case of prion aggregates, these structures can self-replicate
and act as infectious agents. Here we use single molecule spectroscopy
to obtain quantitative information on the oligomer populations formed
during aggregation of the yeast prion protein Ure2. Global analysis
of the aggregation kinetics reveals the molecular mechanism underlying
oligomer formation and depletion. Quantitative characterization indicates
that the majority of Ure2 oligomers are relatively short-lived, and
their rate of dissociation is much higher than their rate of conversion
into growing fibrils. We identify an initial metastable oligomer,
which can subsequently convert into a structurally distinct oligomer,
which in turn converts into growing fibrils. We also show that fragmentation
is responsible for the autocatalytic self-replication of Ure2 fibrils,
but that preformed fibrils do not promote oligomer formation, indicating
that secondary nucleation of the type observed for peptides and proteins
associated with neurodegenerative disease does not occur at a significant
rate for Ure2. These results establish a framework for elucidating
the temporal and causal relationship between oligomers and larger
fibrillar species in amyloid forming systems, and provide insights
into why functional amyloid systems are not toxic to their host organisms.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Alexander J Dear
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Cavendish Laboratory , J J Thomson Avenue, Cambridge CB3 1HE, United Kingdom
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
8
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Abstract
Alzheimer's disease (AD) is the primary cause of age-related dementia. Effective strategies to prevent and treat AD remain elusive despite major efforts to understand its basic biology and clinical pathophysiology. Significant investments in therapeutic drug discovery programs over the past two decades have yielded some important insights but no blockbuster drugs to alter the course of disease. Because significant memory loss and cognitive decline are associated with neuron death and loss of gray matter, especially in the frontal cortex and hippocampus, some focus in drug development has shifted to early prevention of cellular pathology. Although clinical trial design is challenging, due in part to a lack of robust biomarkers with predictive value, some optimism has come from the identification and study of inherited forms of early-onset AD and genetic risk factors that provide insights about molecular pathophysiology and potential drug targets. In addition, better understanding of the Aβ amyloid pathway and the tau pathway-leading to amyloid plaques and neurofibrillary tangles, respectively, which are histopathological hallmarks of AD-continues to drive significant drug research and development programs. The main focus of this review is to summarize the most recent basic biology, biochemistry, and pharmacology that serve as a foundation for more than 50 active advanced-phase clinical trials for AD prevention and therapy.
Collapse
Affiliation(s)
- W Vallen Graham
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065;
| | - Alessandra Bonito-Oliva
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065;
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065; .,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
10
|
Bove-Fenderson E, Urano R, Straub JE, Harris DA. Cellular prion protein targets amyloid-β fibril ends via its C-terminal domain to prevent elongation. J Biol Chem 2017; 292:16858-16871. [PMID: 28842494 DOI: 10.1074/jbc.m117.789990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/15/2017] [Indexed: 11/06/2022] Open
Abstract
Oligomeric forms of the amyloid-β (Aβ) peptide are thought to represent the primary synaptotoxic species underlying the neurodegenerative changes seen in Alzheimer's disease. It has been proposed that the cellular prion protein (PrPC) functions as a cell-surface receptor, which binds to Aβ oligomers and transduces their toxic effects. However, the molecular details of the PrPC-Aβ interaction remain uncertain. Here, we investigated the effect of PrPC on polymerization of Aβ under rigorously controlled conditions in which Aβ converts from a monomeric to a fibrillar state via a series of kinetically defined steps. We demonstrated that PrPC specifically inhibited elongation of Aβ fibrils, most likely by binding to the ends of growing fibrils. Surprisingly, this inhibitory effect required the globular C-terminal domain of PrPC, which has not been previously implicated in interactions with Aβ. Our results suggest that PrPC recognizes structural features common to both Aβ oligomers and fibril ends and that this interaction could contribute to the neurotoxic effect of Aβ aggregates. Additionally, our results identify the C terminus of PrPC as a new and potentially more druggable molecular target for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Erin Bove-Fenderson
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - Ryo Urano
- the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - John E Straub
- the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - David A Harris
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 and
| |
Collapse
|
11
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1759] [Impact Index Per Article: 219.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
The pH-dependent assembly of Chaplin E from Streptomyces coelicolor. J Struct Biol 2017; 198:82-91. [PMID: 28400129 DOI: 10.1016/j.jsb.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
Chaplin E, is one of five self-assembling peptides secreted by Streptomyces coelicolor that assist aerial growth by lowering the surface tension of water. Although the surface activity of a mixture of chaplin peptides has observed to depend on pH, it is unclear how the solvent environment (i.e. pH) influences the structure, assembly and subsequent functionality of these individual peptides. In this study, the conformation and fibril forming propensity of the Chaplin E peptide was assessed as a function of pH using a combination of experimental measurements and molecular dynamics simulations. At an acidic pH of 3.0, Chaplin E retained a random coil structure, whereas at the isoelectric point of 6.7 or a basic pH of 10.0, Chaplin E rapidly formed amyloid fibrils rich in β-sheet structure with high efficiency (>93%). Molecular dynamics simulations indicate the persistence of greater α-helical content at the N-terminus at high pH; this is likely partly due to the lack of electrostatic repulsion between residues His6 and Lys10. Since fibril formation was observed at high but not at low pH, we propose that the presence of an N-terminal α-helix in the monomeric form of Chaplin E is required for aggregation and conversion to β-amyloid fibrils. The pH sensitivity of Chaplin E peptide structure provides a route to control peptide assembly and may be important for the physiological function of this peptide, as a surface active agent in the transition from vegetative to aerial growth and could assist Streptomyces coelicolor in response to environmental fluctuations in pH.
Collapse
|
13
|
Mannini B, Chiti F. Chaperones as Suppressors of Protein Misfolded Oligomer Toxicity. Front Mol Neurosci 2017; 10:98. [PMID: 28424588 PMCID: PMC5380756 DOI: 10.3389/fnmol.2017.00098] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/23/2017] [Indexed: 01/30/2023] Open
Abstract
Chaperones have long been recognized to play well defined functions such as to: (i) assist protein folding and promote formation and maintenance of multisubunit complexes; (ii) mediate protein degradation; (iii) inhibit protein aggregation; and (iv) promote disassembly of undesired aberrant protein aggregates. In addition to these well-established functions, it is increasingly clear that chaperones can also interact with aberrant protein aggregates, such as pre-fibrillar oligomers and fibrils, and inhibit their toxicity commonly associated with neurodegenerative diseases without promoting their disassembly. In particular, the evidence collected so far in different labs, exploiting different experimental approaches and using different chaperones and client aggregated proteins, indicates the existence of two distinct mechanisms of action mediated by the chaperones to neutralize the toxicity of aberrant proteins oligomers: (i) direct binding of the chaperones to the hydrophobic patches exposed on the oligomer/fibril surface, with resulting shielding or masking of the moieties responsible for the aberrant interactions with cellular targets; (ii) chaperone-mediated conversion of aberrant protein aggregates into large and more innocuous species, resulting in a decrease of their surface-to-volume ratio and diffusibility and in deposits more easily manageable by clearance mechanisms, such as autophagy. In this review article we will describe the in vitro and in vivo evidence supporting both mechanisms and how this results in a suppression of the detrimental effects caused by protein misfolded aggregates.
Collapse
Affiliation(s)
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of FlorenceFlorence, Italy
| |
Collapse
|
14
|
Chin J, Mustafi D, Poellmann MJ, Lee RC. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol. Phys Biol 2017; 14:016003. [PMID: 28061483 DOI: 10.1088/1478-3975/aa5788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Certain amphiphilic block copolymers are known to prevent aggregation of unfolded proteins. To better understand the mechanism of this effect, the optical properties of heat-denatured and dithiothreitol reduced lysozyme were evaluated with respect to controls using UV-Vis spectroscopy, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. Then, the effects of adding Polyethylene Glycol (8000 Da), the triblock surfactant Poloxamer 188 (P188), and the tetrablock copolymer Tetronic 1107 (T1107) to the lysozyme solution were compared. Overall, T1107 was found to be more effective than P188 in inhibiting aggregation, while PEG exhibited no efficacy. TEM imaging of heat-denatured and reduced lysozymes revealed spherical aggregates with on average 250-450 nm diameter. Using CD, more soluble lysozyme was recovered with T1107 than P188 with β-sheet secondary structure. The greater effectiveness of the larger T1107 in preventing aggregation of unfolded lysozyme than the smaller P188 and PEG points to steric hindrance at play; signifying the importance of size match between the hydrophobic region of denatured protein and that of amphiphilic copolymers. Thus, our results corroborate that certain multi-block copolymers are effective in preventing heat-induced aggregation of reduced lysozymes and future studies warrant more detailed focus on specific applications of these copolymers.
Collapse
Affiliation(s)
- Jaemin Chin
- Departments of Surgery, The University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | |
Collapse
|
15
|
Automated Ex Situ Assays of Amyloid Formation on a Microfluidic Platform. Biophys J 2017; 110:555-560. [PMID: 26840721 PMCID: PMC4744157 DOI: 10.1016/j.bpj.2015.11.3523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/14/2015] [Accepted: 11/25/2015] [Indexed: 01/24/2023] Open
Abstract
Increasingly prevalent neurodegenerative diseases are associated with the formation of nanoscale amyloid aggregates from normally soluble peptides and proteins. A widely used strategy for following the aggregation process and defining its kinetics involves the use of extrinsic dyes that undergo a spectral shift when bound to β-sheet-rich aggregates. An attractive route to carry out such studies is to perform ex situ assays, where the dye molecules are not present in the reaction mixture, but instead are only introduced into aliquots taken from the reaction at regular time intervals to avoid the possibility that the dye molecules interfere with the aggregation process. However, such ex situ measurements are time-consuming to perform, require large sample volumes, and do not provide for real-time observation of aggregation phenomena. To overcome these limitations, here we have designed and fabricated microfluidic devices that offer continuous and automated real-time ex situ tracking of the protein aggregation process. This device allows us to improve the time resolution of ex situ aggregation assays relative to conventional assays by more than one order of magnitude. The availability of an automated system for tracking the progress of protein aggregation reactions without the presence of marker molecules in the reaction mixtures opens up the possibility of routine noninvasive study of protein aggregation phenomena.
Collapse
|
16
|
Saha S, Deep S. Glycerol inhibits the primary pathways and transforms the secondary pathway of insulin aggregation. Phys Chem Chem Phys 2016; 18:18934-48. [PMID: 27353748 DOI: 10.1039/c6cp02906j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aggregation of insulin initiated from the monomeric form proceeds via the secondary pathway of fragmentation. It was interesting to find that glycerol had the potential to transform the secondary pathway of aggregation from fragmentation to heterogeneous nucleation in a concentration dependent manner. Such a change in the secondary pathway was manifested by a change in the fibrillar morphology, wherein, longer fibrils were formed in the presence of glycerol. Glycerol could inhibit all the major steps of insulin aggregation. The analysis of the kinetic traces suggested that the inhibitory effect was most significant on the primary pathways, although secondary nucleation and elongation were also inhibited. In fact, at higher glycerol concentrations, the primary pathways were inhibited to such an extent that the majority of the aggregation was now driven by the secondary pathways. Our data suggest that glycerol binds to the early intermediates in the insulin aggregation pathway, and inhibits them from forming the aggregation competent species capable of elongation. As higher order species are formed in the aggregation pathway, the relative stabilization rendered by glycerol diminishes due to the exclusion of glycerol from the interface.
Collapse
Affiliation(s)
- Shivnetra Saha
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi, Delhi, India.
| | | |
Collapse
|
17
|
Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat Commun 2016; 7:10948. [PMID: 27009901 PMCID: PMC4820785 DOI: 10.1038/ncomms10948] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/03/2016] [Indexed: 12/24/2022] Open
Abstract
It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation. Molecular chaperones are recognized to interfere with protein aggregation, yet the underlying mechanisms are largely unknown. Here, the authors develop a kinetic model that reveals the variety of distinct microscopic mechanisms through which molecular chaperones act to suppress amyloid formation.
Collapse
|
18
|
Saha S, Shekhawat R, Deep S. Modulations in the self-assembly of bovine serum albumin by enhanced depolymerisation and condensation induced upon stirring. RSC Adv 2016. [DOI: 10.1039/c6ra20243h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An unusual phenomenon in the aggregation profile of BSA in the presence of CTAB, brought about by stirring, is reported here.
Collapse
Affiliation(s)
- Shivnetra Saha
- Department of Chemistry
- Indian Institute of Technology
- New Delhi
- India
| | - Rupali Shekhawat
- Department of Chemistry
- Indian Institute of Technology
- New Delhi
- India
| | - Shashank Deep
- Department of Chemistry
- Indian Institute of Technology
- New Delhi
- India
| |
Collapse
|
19
|
Wright MA, Aprile FA, Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chem Commun (Camb) 2015; 51:14425-34. [PMID: 26328629 PMCID: PMC8597951 DOI: 10.1039/c5cc03689e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
Molecular chaperones are key components of the arsenal of cellular defence mechanisms active against protein aggregation. In addition to their established role in assisting protein folding, increasing evidence indicates that molecular chaperones are able to protect against a range of potentially damaging aspects of protein behaviour, including misfolding and aggregation events that can result in the generation of aberrant protein assemblies whose formation is implicated in the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The interactions between molecular chaperones and different amyloidogenic protein species are difficult to study owing to the inherent heterogeneity of the aggregation process as well as the dynamic nature of molecular chaperones under physiological conditions. As a consequence, understanding the detailed microscopic mechanisms underlying the nature and means of inhibition of aggregate formation remains challenging yet is a key objective for protein biophysics. In this review, we discuss recent results from biophysical studies on the interactions between molecular chaperones and protein aggregates. In particular, we focus on the insights gained from current experimental techniques into the dynamics of the oligomerisation process of molecular chaperones, and highlight the opportunities that future biophysical approaches have in advancing our understanding of the great variety of biological functions of this important class of proteins.
Collapse
Affiliation(s)
- Maya A. Wright
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Francesco A. Aprile
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Paolo Arosio
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Michele Vendruscolo
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Christopher M. Dobson
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| |
Collapse
|
20
|
Hu W, Wu H, Zhang H, Gong W, Perrett S. Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:329-332. [PMID: 25682100 DOI: 10.1007/s12104-015-9603-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Hsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family. In vivo and biochemical studies on Ssa1 have revealed that it regulates prion propagation and the cell cycle. However, no structural data has been obtained for Ssa1 up to now. Here we report the almost complete (96 %) (1)H, (13)C, (15)N backbone and side chain NMR assignment of the 18.8 kDa Ssa1 substrate binding domain. The construct includes residues 382-554, which corresponds to the entire substrate binding domain and two following α-helices in homologous structures. The secondary structure predicted from the assigned chemical shifts is consistent with that of homologous Hsp70 substrate binding domains.
Collapse
Affiliation(s)
- Wanhui Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Huiwen Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
22
|
Abstract
Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis.
Collapse
|
23
|
Zhou XM, Shimanovich U, Herling TW, Wu S, Dobson CM, Knowles TPJ, Perrett S. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS NANO 2015; 9:5772-81. [PMID: 26030507 PMCID: PMC4537113 DOI: 10.1021/acsnano.5b00061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 05/20/2023]
Abstract
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ulyana Shimanovich
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Therese W. Herling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Si Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Address correspondence to ,
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Address correspondence to ,
| |
Collapse
|
24
|
Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation. Proc Natl Acad Sci U S A 2015; 112:5407-12. [PMID: 25825723 DOI: 10.1073/pnas.1421961112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metal ions have emerged to play a key role in the aggregation process of amyloid β (Aβ) peptide that is closely related to the pathogenesis of Alzheimer's disease. A detailed understanding of the underlying mechanistic process of peptide-metal interactions, however, has been challenging to obtain. By applying a combination of NMR relaxation dispersion and fluorescence kinetics methods we have investigated quantitatively the thermodynamic Aβ-Zn(2+) binding features as well as how Zn(2+) modulates the nucleation mechanism of the aggregation process. Our results show that, under near-physiological conditions, substoichiometric amounts of Zn(2+) effectively retard the generation of amyloid fibrils. A global kinetic profile analysis reveals that in the absence of zinc Aβ40 aggregation is driven by a monomer-dependent secondary nucleation process in addition to fibril-end elongation. In the presence of Zn(2+), the elongation rate is reduced, resulting in reduction of the aggregation rate, but not a complete inhibition of amyloid formation. We show that Zn(2+) transiently binds to residues in the N terminus of the monomeric peptide. A thermodynamic analysis supports a model where the N terminus is folded around the Zn(2+) ion, forming a marginally stable, short-lived folded Aβ40 species. This conformation is highly dynamic and only a few percent of the peptide molecules adopt this structure at any given time point. Our findings suggest that the folded Aβ40-Zn(2+) complex modulates the fibril ends, where elongation takes place, which efficiently retards fibril formation. In this conceptual framework we propose that zinc adopts the role of a minimal antiaggregation chaperone for Aβ40.
Collapse
|
25
|
Roy J, Mitra S, Sengupta K, Mandal AK. Hsp70 clears misfolded kinases that partitioned into distinct quality-control compartments. Mol Biol Cell 2015; 26:1583-600. [PMID: 25739454 PMCID: PMC4436772 DOI: 10.1091/mbc.e14-08-1262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/26/2015] [Indexed: 01/13/2023] Open
Abstract
Hsp70 facilitates maturation of newly synthesized kinases and assists degradation of kinases under normal and stressed conditions. Hsp70 degrades misfolded kinases that partition into different quality-control compartments by promoting their ubiquitination, thus protecting cells from proteotoxic stress. Hsp70 aids in protein folding and directs misfolded proteins to the cellular degradation machinery. We describe discrete roles of Hsp70,SSA1 as an important quality-control machinery that switches functions to ameliorate the cellular environment. SSA1 facilitates folding/maturation of newly synthesized protein kinases by aiding their phosphorylation process and also stimulates ubiquitylation and degradation of kinases in regular protein turnover or during stress when kinases are denatured or improperly folded. Significantly, while kinases accumulate as insoluble inclusions upon SSA1 inhibition, they form soluble inclusions upon Hsp90 inhibition or stress foci during heat stress. This suggests formation of inclusion-specific quality-control compartments under various stress conditions. Up-regulation of SSA1 results in complete removal of these inclusions by the proteasome. Elevation of the cellular SSA1 level accelerates kinase turnover and protects cells from proteotoxic stress. Upon overexpression, SSA1 targets heat-denatured kinases toward degradation, which could enable them to recover their functional state under physiological conditions. Thus active participation of SSA1 in the degradation of misfolded proteins establishes an essential role of Hsp70 in deciding client fate during stress.
Collapse
Affiliation(s)
- Joydeep Roy
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Sahana Mitra
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Atin K Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
26
|
Wang C, Xu L, Cheng F, Wang H, Jia L. Curcumin induces structural change and reduces the growth of amyloid-β fibrils: a QCM-D study. RSC Adv 2015. [DOI: 10.1039/c5ra02314a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Curcumin inhibited Aβ fibril growth through leading to the structural conversion of the growing fibril to a more loosely constructed aggregate.
Collapse
Affiliation(s)
- Conggang Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Li Xu
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Fang Cheng
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Hanqi Wang
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Lingyun Jia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- P. R. China
| |
Collapse
|
27
|
The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. Essays Biochem 2014; 56:11-39. [DOI: 10.1042/bse0560011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we present an overview of the kinetics and thermodynamics of protein aggregation into amyloid fibrils. The perspective we adopt is largely experimental, but we also discuss recent developments in data analysis and we show that only a combination of well-designed experiments with appropriate theoretical modelling is able to provide detailed mechanistic insight into the complex pathways of amyloid formation. In the first part of the chapter, we describe measurements of the thermodynamic stability of the amyloid state with respect to the soluble state of proteins, as well as the magnitude and origin of this stability. In the second part, we discuss in detail the kinetics of the individual molecular steps in the overall mechanism of the conversion of soluble protein into amyloid fibrils. Finally, we highlight the effects of external factors, such as salt type and concentration, chemical denaturants and molecular chaperones on the kinetics of aggregation.
Collapse
|
28
|
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014; 15:384-96. [PMID: 24854788 DOI: 10.1038/nrm3810] [Citation(s) in RCA: 1677] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phenomenon of protein aggregation and amyloid formation has become the subject of rapidly increasing research activities across a wide range of scientific disciplines. Such activities have been stimulated by the association of amyloid deposition with a range of debilitating medical disorders, from Alzheimer's disease to type II diabetes, many of which are major threats to human health and welfare in the modern world. It has become clear, however, that the ability to form the amyloid state is more general than previously imagined, and that its study can provide unique insights into the nature of the functional forms of peptides and proteins, as well as understanding the means by which protein homeostasis can be maintained and protein metastasis avoided.
Collapse
Affiliation(s)
- Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
29
|
Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol Sci 2014; 35:127-35. [PMID: 24560688 DOI: 10.1016/j.tips.2013.12.005] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/17/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022]
Abstract
Protein misfolding diseases are becoming increasingly prevalent, yet there are very few effective pharmacological treatments. The onset and progression of these diseases is associated with the aberrant aggregation of normally soluble proteins and peptides into amyloid fibrils. Because genetic and physiological findings suggest that protein aggregation is a key event in pathogenesis, an attractive therapeutic strategy against this class of disorders is the search for compounds able to interfere with this process, in particular by suppressing the formation of soluble toxic oligomeric aggregates. In this review, we discuss how chemical kinetics can contribute to the fundamental understanding of the molecular mechanism of aggregation, and speculate on the implications for the development of therapeutic molecules that inhibit specific steps in the aggregation pathway that are crucial for preventing toxicity.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
30
|
Quinlan RA, Ellis RJ. Chaperones: needed for both the good times and the bad times. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130091. [PMID: 23530265 DOI: 10.1098/rstb.2013.0091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this issue, we explore the assembly roles of protein chaperones, mainly through the portal of their associated human diseases (e.g. cardiomyopathy, cataract, neurodegeneration, cancer and neuropathy). There is a diversity to chaperone function that goes beyond the current emphasis in the scientific literature on their undoubted roles in protein folding and refolding. The focus on chaperone-mediated protein folding needs to be broadened by the original Laskey discovery that a chaperone assists the assembly of an oligomeric structure, the nucleosome, and the subsequent suggestion by Ellis that other chaperones may function in assembly processes, as well as in folding. There have been a number of recent discoveries that extend this relatively neglected aspect of chaperone biology to include proteostasis, maintenance of the cellular redox potential, genome stability, transcriptional regulation and cytoskeletal dynamics. So central are these processes that we propose that chaperones stand at the crossroads of life and death because they mediate essential functions, not only during the bad times, but also in the good times. We suggest that chaperones facilitate the success of a species, and hence the evolution of individuals within populations, because of their contributions to so many key cellular processes, of which protein folding is only one.
Collapse
Affiliation(s)
- Roy A Quinlan
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|