1
|
Signorini SG, Munari M, Crocetta F, Moro I, D'Aniello I, Nigro L, Micheli F, Della Torre C. Short and long-term exposure to ocean acidification in limpets from the Castello Aragonese vent systems (Ischia Island, Italy). ENVIRONMENTAL RESEARCH 2025; 279:121874. [PMID: 40381720 DOI: 10.1016/j.envres.2025.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/29/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Ocean acidification (OA) is reported to entail a detrimental impact on calcifying organisms. Nevertheless, patellid limpets - P. caerulea, P. rustica, and P. ulyssiponensis - are able to persist in extremely low pH conditions inside the Castello Aragonese CO2 vent systems (Ischia Island), suggesting that they may have developed tolerance to OA, through plasticity and/or adaptive mechanisms. The aim of this study is to evaluate the long-term strategies adopted by limpets that spent their entire life cycle in naturally acidified conditions and the short-term ones induced by a 30-day in situ transplant experiment. Regarding native limpet populations, P. caerulea exhibited increasing size and higher energy resources in the extremely acidified site, potentially related to different food availability or to reduction in competition and/or predatory pressure; furthermore, no effects on oxidative stress, biomineralization and neurotoxicity occurred. Similarly, P. ulyssiponensis didn't exhibit any significant effects among different pH conditions regarding biochemical endpoints. Conversely, P. rustica displayed a significant modulation of almost all biochemical parameters, possibly due to its different position on the rocky shore. The short-term exposure of P. caerulea produced a decrease in protein content and an increase in glycogen content in the extreme acidified site, with an induction of superoxide dismutase and glutathione-S-transferases activities in the intermediate pH site. Overall, our study revealed that different species of the same genus may have developed distinct responses to OA and suggested different mechanisms to cope with short and long-term exposure to low pH conditions.
Collapse
Affiliation(s)
- Silvia Giorgia Signorini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Biology, University of Padova, Via U. Bassi 58/B, 35121, Padova, Italy
| | - Fabio Crocetta
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; NBFC, National Biodiversity Future Center - Palermo, Piazza Marina 61, 90133, Palermo, Italy
| | - Isabella Moro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Biology, University of Padova, Via U. Bassi 58/B, 35121, Padova, Italy; NBFC, National Biodiversity Future Center - Palermo, Piazza Marina 61, 90133, Palermo, Italy
| | - Ilaria D'Aniello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121, Padova, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Fiorenza Micheli
- Hopkins Marine Station and Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
2
|
Molinari CG, McDougall C, Pitt KA. Understanding Dynamic Molecular Responses Is Key to Designing Environmental Stress Experiments: A Review of Gene and Protein Expression in Cnidaria Under Stress. Mol Ecol 2025; 34:e17753. [PMID: 40170371 PMCID: PMC12010465 DOI: 10.1111/mec.17753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 01/10/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Gene and protein expression analyses are powerful tools to investigate the responses of cnidarians to stress, providing information on both genetic and functional variation and capturing dynamic shifts in organismal physiology. As the use of high throughput sequencing to understand responses of cnidarians to stressors is still relatively new, standard experimental protocols have not yet been established, which limits the ability to compare studies. We (1) systematically reviewed the literature of cnidarian gene and protein expression studies related to environmental stressors to determine how the laboratory experiments were designed and (2) investigated the consistency in responses of genes commonly used as biomarkers within stress experiments conducted on the five most-studied cnidarian genera. Duration of exposure to the stressor, acclimation period and intensity of stress varied greatly among experiments, and most studies did not sample during acclimation and recovery. Before designing experiments that aim to characterise molecular responses to a specific environmental stress, research efforts need to focus on understanding the plasticity of whole transcriptome responses, as gene expression can vary under different stress intensities and durations of exposure. Additionally, only seven genes that were tested in at least two different genera showed a consistent response under heat stress (CuZn-SOD, c-type lectin, FGFR1, MMP, Zn-MP, NF-κB and SLC26). These genes have the potential to standardise evaluations of temperature stress across experiments on cnidarians, and we suggest exploring their use as general cnidarian biomarkers of temperature stress (cBATS).
Collapse
Affiliation(s)
| | - Carmel McDougall
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsFifeUK
| | - Kylie A. Pitt
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Ocampo EH, Nuñez JD, Ribeiro PD, Pérez García M, Bas CC, Luppi TA. Disparate response of decapods to low pH: A meta-analysis of life history, physiology and behavior traits across life stages and environments. MARINE POLLUTION BULLETIN 2024; 202:116293. [PMID: 38537497 DOI: 10.1016/j.marpolbul.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
We employed a meta-analysis to determine if the presumed resilience of decapods to ocean acidification extends to all biological aspects, environments, and life stages. Most response categories appeared unaffected by acidification. However, certain fitness-related traits (growth, survival, and, to some extent, calcification) were impacted. Acid-base balance and stress response scaled positively with reductions in pH, which maintains homeostasis, possibly at the cost of other processes. Juveniles were the only stage impacted by acidification, which is believed to reduce recruitment. We observed few differences in responses to acidification among decapods inhabiting contrasting environments. Our meta-analysis shows decapods as a group slightly to moderately sensitive to low pH, with impacts on some biological aspects rather than on all specific life stages or habitats. Although extreme pH scenarios may not occur in the open ocean, coastal and estuarine areas might experience lower pH levels in the near to medium future, posing potential challenges for decapods.
Collapse
Affiliation(s)
- Emiliano H Ocampo
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Jesus D Nuñez
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Pablo D Ribeiro
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Macarena Pérez García
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina.
| | - Claudia C Bas
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Tomas A Luppi
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| |
Collapse
|
4
|
Pascal L, Cool J, Archambault P, Calosi P, Cuenca ALR, Mucci AO, Chaillou G. Ocean deoxygenation caused non-linear responses in the structure and functioning of benthic ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e16994. [PMID: 37916608 DOI: 10.1111/gcb.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
The O2 content of the global ocean has been declining progressively over the past decades, mainly because of human activities and global warming. Nevertheless, how long-term deoxygenation affects macrobenthic communities, sediment biogeochemistry and their mutual feedback remains poorly understood. Here, we evaluate the response of the benthic assemblages and biogeochemical functioning to decreasing O2 concentrations along the persistent bottom-water dissolved O2 gradient of the Estuary and Gulf of St. Lawrence (QC, Canada). We report several of non-linear biodiversity and functional responses to decreasing O2 concentrations, and identify an O2 threshold that occurs at approximately at 63 μM. Below this threshold, macrobenthic community assemblages change, and bioturbation rates drastically decrease to near zero. Consequently, the sequence of electron acceptors used to metabolize the sedimentary organic matter is squeezed towards the sediment surface while reduced compounds accumulate closer (as much as 0.5-2.5 cm depending on the compound) to the sediment-water interface. Our results illustrate the capacity of bioturbating species to compensate for the biogeochemical consequences of hypoxia and can help to predict future changes in benthic ecosystems.
Collapse
Affiliation(s)
- Ludovic Pascal
- Québec Océan, Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Joannie Cool
- Québec Océan, Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Philippe Archambault
- Québec Océan, Takuvik, Département de Biologie, Université Laval, Quebec, Quebec, Canada
| | - Piero Calosi
- Québec Océan, Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - André L R Cuenca
- Québec Océan, Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Alfonso O Mucci
- GÉOTOP, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada
| | - Gwénaëlle Chaillou
- Québec Océan, Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| |
Collapse
|
5
|
Schwaner C, Farhat S, Boutet I, Tanguy A, Barbosa M, Grouzdev D, Pales Espinosa E, Allam B. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:997-1019. [PMID: 37864760 DOI: 10.1007/s10126-023-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
6
|
Thomasdotter A, Shum P, Mugnai F, Vingiani M, Dubut V, Marschal F, Abbiati M, Chenuil A, Costantini F. Spineless and overlooked: DNA metabarcoding of autonomous reef monitoring structures reveals intra- and interspecific genetic diversity in Mediterranean invertebrates. Mol Ecol Resour 2023; 23:1689-1705. [PMID: 37452608 DOI: 10.1111/1755-0998.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ability to gather genetic information using DNA metabarcoding of bulk samples obtained directly from the environment is crucial to determine biodiversity baselines and understand population dynamics in the marine realm. While DNA metabarcoding is effective in evaluating biodiversity at community level, genetic patterns within species are often concealed in metabarcoding studies and overlooked for marine invertebrates. In the present study, we implement recently developed bioinformatics tools to investigate intraspecific genetic variability for invertebrate taxa in the Mediterranean Sea. Using metabarcoding samples from Autonomous Reef Monitoring Structures (ARMS) deployed in three locations, we present haplotypes and diversity estimates for 145 unique species. While overall genetic diversity was low, we identified several species with high diversity records and potential cryptic lineages. Further, we emphasize the spatial scale of genetic variability, which was observed from locations to individual sampling units (ARMS). We carried out a population genetic analysis of several important yet understudied species, which highlights the current knowledge gap concerning intraspecific genetic patterns for the target taxa in the Mediterranean basin. Our approach considerably enhances biodiversity monitoring of charismatic and understudied Mediterranean species, which can be incorporated into ARMS surveys.
Collapse
Affiliation(s)
- Anna Thomasdotter
- County Administrative Board of Västerbotten, Umeå, Sweden
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
| | - Peter Shum
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Francesco Mugnai
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
| | - Marina Vingiani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
- National Research Council, Institute of Marine Sciences, CNR-ISMAR, Venice, Italy
| | - Vincent Dubut
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Florent Marschal
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Marco Abbiati
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- National Interuniversity Consortium for Marine Sciences (CoNISMa), Rome, Italy
- Interdepartmental Research Center for Environmental Sciences (CIRSA), Ravenna, Italy
- Institute of Marine Sciences, National Research Council (CNR-ISMAR), Bologna, Italy
| | - Anne Chenuil
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Federica Costantini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, UOS Ravenna, Ravenna, Italy
- National Interuniversity Consortium for Marine Sciences (CoNISMa), Rome, Italy
- Interdepartmental Research Center for Environmental Sciences (CIRSA), Ravenna, Italy
| |
Collapse
|
7
|
Simonetti S, Zupo V, Gambi MC, Luckenbach T, Corsi I. Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: New frontiers in the study of adaptation to ocean acidification. MARINE POLLUTION BULLETIN 2022; 185:114365. [PMID: 36435021 DOI: 10.1016/j.marpolbul.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular responses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity.
Collapse
Affiliation(s)
- Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | | | - Till Luckenbach
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| |
Collapse
|
8
|
Teixeira MAL, Langeneck J, Vieira PE, Hernández JC, Sampieri BR, Kasapidis P, Mucciolo S, Bakken T, Ravara A, Nygren A, Costa FO. Reappraisal of the hyperdiverse. INVERTEBR SYST 2022. [DOI: 10.1071/is21084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Morphologically similar species are often overlooked but molecular techniques have been effective in signalling potential hidden diversity, boosting the documentation of unique evolutionary lineages and ecological diversity. Platynereis dumerilii and Platynereis massiliensis are part of a recognised species complex, where differences in the reproductive biology have mainly been highlighted to date. Analyses of DNA sequence data (COI, 16S rDNA and D2 region of the 28S rDNA) of populations of the apparent morphotype of P. dumerilii obtained from a broader sampling area along European marine waters, including the Azores and Webbnesia islands (Madeira and Canaries), provided compelling evidence for the existence of at least 10 divergent evolutionary lineages. Complementing the genetic data, morphological observations of the better represented lineages revealed two major groups with distinctive paragnath patterns. Two new Platynereis species were erected: P. nunezi sp. nov., widespread in the Azores and Webbnesia islands, and P. jourdei sp. nov., restricted to the western Mediterranean. The new combination P. agilis is also proposed for Nereis agilis, previously unaccepted for one of the lineages present both in the Northeast Atlantic and western Mediterranean. Platynereis dumerilii is redescribed based on topotypic material. However, uncertainty in the identity of P. massiliensis due to the original brief description and the absence of type and topotypic material prevents the unequivocal assignment to the lineage assumed in this and previous studies. The remaining five lineages are represented by only a few small specimens with morphological features poorly preserved and were therefore not described in this study. ZooBank: urn:lsid:zoobank.org:pub:50079615-85E5-447E-BDD7-21E81C2A6F4D
Collapse
|
9
|
Spatafora D, Cattano C, Aglieri G, Quattrocchi F, Turco G, Quartararo G, Dudemaine J, Calosi P, Milazzo M. Limited behavioural effects of ocean acidification on a Mediterranean anemone goby (Gobius incognitus) chronically exposed to elevated CO 2 levels. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105758. [PMID: 36183457 DOI: 10.1016/j.marenvres.2022.105758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
An in situ reciprocal transplant experiment was carried around a volcanic CO2 vent to evaluate the anti-predator responses of an anemone goby species exposed to ambient (∼380 μatm) and high (∼850 μatm) CO2 sites. Overall, the anemone gobies displayed largely unaffected behaviors under high-CO2 conditions suggesting an adaptive potential of Gobius incognitus to ocean acidification (OA) conditions. This is also supported by its 3-fold higher density recorded in the field under high CO2. However, while fish exposed to ambient conditions showed an expected reduction in the swimming activity in the proximity of the predator between the pre- and post-exposure period, no such changes were detected in any of the other treatments where fish experienced acute and long-term high CO2. This may suggest an OA effect on the goby antipredator strategy. Our findings contribute to the ongoing debate over the need for realistic predictions of the impacts of expected increased CO2 concentration on fish, providing evidence from a natural high CO2 system.
Collapse
Affiliation(s)
- Davide Spatafora
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy; Shimoda Marine Research Centre, Tsukuba University, Shimoda City, Shizuoka 415-0025, Japan.
| | - Carlo Cattano
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
| | - Giorgio Aglieri
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
| | - Federico Quattrocchi
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council CNR, Mazara del Vallo (TP), Italy
| | - Gabriele Turco
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy
| | - Giulia Quartararo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy
| | - Jeanne Dudemaine
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy
| |
Collapse
|
10
|
Barbosa M, Schwaner C, Pales Espinosa E, Allam B. A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea virginica Larvae under Experimental Acidification. Genes (Basel) 2022; 13:1529. [PMID: 36140697 PMCID: PMC9498863 DOI: 10.3390/genes13091529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO2 (~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.
Collapse
Affiliation(s)
| | | | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Sony Brook University, Stony Brook, NY 11790, USA
| |
Collapse
|
11
|
Munari M, Chiarore A, Signorini SG, Cannavacciuolo A, Nannini M, Magni S, Binelli A, Gambi MC, Della Torre C. Surviving in a changing ocean. Tolerance to acidification might affect the susceptibility of polychaetes to chemical contamination. MARINE POLLUTION BULLETIN 2022; 181:113857. [PMID: 35749979 DOI: 10.1016/j.marpolbul.2022.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/26/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the combined effects of ocean acidification (OA) and pollution to the polychaete Syllis prolifera inhabiting the CO2 vent system of the Castello Aragonese (Ischia Island, Italy). We investigated the basal activities of antioxidant enzymes in organisms from the acidified site and from an ambient-pH control site in two different periods of the year. Results showed a limited influence of acidified conditions on the functionality of the antioxidant system. We then investigated the responsiveness of individuals living inside the CO2 vent compared to those from the control to face exposure to acetone and copper. Results highlighted a higher susceptibility of organisms from the vent to acetone and a different response of antioxidant enzymes in individuals from the two sites. Conversely, a higher tolerance to copper was observed in polychaetes from the acidified-site with respect to controls, but any significant oxidative stress was induced at sublethal concentrations.
Collapse
Affiliation(s)
- Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy; Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Matteo Nannini
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
12
|
Roggatz CC, Saha M, Blanchard S, Schirrmacher P, Fink P, Verheggen F, Hardege JD. Becoming nose-blind-Climate change impacts on chemical communication. GLOBAL CHANGE BIOLOGY 2022; 28:4495-4505. [PMID: 35574993 PMCID: PMC9321854 DOI: 10.1111/gcb.16209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 05/08/2023]
Abstract
Chemical communication via infochemicals plays a pivotal role in ecological interactions, allowing organisms to sense their environment, locate predators, food, habitats, or mates. A growing number of studies suggest that climate change-associated stressors can modify these chemically mediated interactions, causing info-disruption that scales up to the ecosystem level. However, our understanding of the underlying mechanisms is scarce. Evidenced by a range of examples, we illustrate in this opinion piece that climate change affects different realms in similar patterns, from molecular to ecosystem-wide levels. We assess the importance of different stressors for terrestrial, freshwater, and marine ecosystems and propose a systematic approach to address highlighted knowledge gaps and cross-disciplinary research avenues.
Collapse
Affiliation(s)
| | | | - Solène Blanchard
- Department of Chemical and Behavioural Ecology, Gembloux Agro‐Bio TechUniversité de LiègeGemblouxBelgium
| | | | - Patrick Fink
- Department River EcologyHelmholtz Centre for Environmental Research GmbH – UFZMagdeburgGermany
- Department Aquatic Ecosystem Analysis and ManagementHelmholtz Centre for Environmental Research GmbH – UFZMagdeburgGermany
| | - François Verheggen
- Department of Chemical and Behavioural Ecology, Gembloux Agro‐Bio TechUniversité de LiègeGemblouxBelgium
| | - Jörg D. Hardege
- Department of Biological and Marine SciencesUniversity of HullHullUK
| |
Collapse
|
13
|
Manríquez PH, Jara ME, González CP, Jeno K, Domenici P, Watson SA, Duarte C, Brokordt K. Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:118918. [PMID: 35227850 DOI: 10.1016/j.envpol.2022.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - María Elisa Jara
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Katherine Jeno
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Paolo Domenici
- CNR-IBF Istituto di Biofisica, Pisa, Italy; CNR-IAS Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Oristano, Italy
| | - Sue-Ann Watson
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, Queensland, 4810, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Chile; Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Chile
| | - Katherina Brokordt
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
14
|
Blewett TA, Binning SA, Weinrauch AM, Ivy CM, Rossi GS, Borowiec BG, Lau GY, Overduin SL, Aragao I, Norin T. Physiological and behavioural strategies of aquatic animals living in fluctuating environments. J Exp Biol 2022; 225:275292. [PMID: 35511083 DOI: 10.1242/jeb.242503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shallow or near-shore environments, such as ponds, estuaries and intertidal zones, are among the most physiologically challenging of all aquatic settings. Animals inhabiting these environments experience conditions that fluctuate markedly over relatively short temporal and spatial scales. Living in these habitats requires the ability to tolerate the physiological disturbances incurred by these environmental fluctuations. This tolerance is achieved through a suite of physiological and behavioural responses that allow animals to maintain homeostasis, including the ability to dynamically modulate their physiology through reversible phenotypic plasticity. However, maintaining the plasticity to adjust to some stresses in a dynamic environment may trade off with the capacity to deal with other stressors. This paper will explore studies on select fishes and invertebrates exposed to fluctuations in dissolved oxygen, salinity and pH. We assess the physiological mechanisms these species employ to achieve homeostasis, with a focus on the plasticity of their responses, and consider the resulting physiological trade-offs in function. Finally, we discuss additional factors that may influence organismal responses to fluctuating environments, such as the presence of multiple stressors, including parasites. We echo recent calls from experimental biologists to consider physiological responses to life in naturally fluctuating environments, not only because they are interesting in their own right but also because they can reveal mechanisms that may be crucial for living with increasing environmental instability as a consequence of climate change.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Catherine M Ivy
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
| | - Giulia S Rossi
- Department of Biological Science, University of Toronto, Scarborough, ON, Canada, M1C 1A4
| | - Brittney G Borowiec
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Gigi Y Lau
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Sienna L Overduin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Isabel Aragao
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Divergent physiological acclimation responses to warming between two co-occurring salamander species and implications for terrestrial survival. J Therm Biol 2022; 106:103228. [DOI: 10.1016/j.jtherbio.2022.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
|
16
|
Liguori A. Multigenerational Life-History Responses to pH in Distinct Populations of the Copepod Tigriopus californicus. THE BIOLOGICAL BULLETIN 2022; 242:97-117. [PMID: 35580028 DOI: 10.1086/719573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intertidal zones are highly dynamic and harsh habitats: organisms that persist there must face many stressors, including drastic changes in seawater pH, which can be strongly influenced by biological processes. Coastal ecosystems are heterogeneous in space and time, and populations can be exposed to distinct selective pressures and evolve different capacities for acclimation to changes in pH. Tigriopus californicus is a harpacticoid copepod found in high-shore rock pools on the west coast of North America. It is a model system for studying population dynamics in diverse environments, but little is known about its responses to changes in seawater pH. I quantified the effects of pH on the survivorship, fecundity, and development of four T. californicus populations from San Juan Island, Washington, across three generations. For all populations and generations, copepod cultures had lower survivorship and delayed development under extended exposure to higher pH treatments (pH 7.5 and pH 8.0), whereas cultures maintained in lower pH (7.0) displayed stable population growth over time. Reciprocal transplants between treatments demonstrated that these pH effects were reversible. Life histories were distinct between populations, and there were differences in the magnitudes of pH effects on development and culture growth that persisted through multiple generations. These results suggest that T. californicus might not have the generalist physiology that might be expected of an intertidal species, and it could be adapted to lower average pH conditions than those that occur in adjacent open waters.
Collapse
|
17
|
Structural and Functional Analyses of Motile Fauna Associated with Cystoseira brachycarpa along a Gradient of Ocean Acidification in a CO2-Vent System off Panarea (Aeolian Islands, Italy). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ocean acidification (OA), one of the main climate-change-related stressors linked to increasing CO2 concentration in the atmosphere, is considered an important threat to marine biodiversity and habitats. Studies on CO2-vents systems, naturally acidified environments that mimic future ocean scenarios, help to explore the sensitivity of species and to understand how benthic communities rearrange their structure and functioning under the pressure of OA. We addressed this problem by studying the benthic invertebrates associated with a habitat-forming brown alga (Cystoseira brachycarpa) in the Bottaro crater vents system off Panarea island (Tyrrhenian Sea, Italy), by sampling along an OA gradient from the proximity of the main venting area (station B3, pH 7.9) to a control zone (B1 station, pH 8.1). Samples were collected in September 2016 and 2018. A total of 184 taxa and 23 different functional traits have been identified, considering feeding habit, motility, size, reproductive and developmental biology, and occurrence of calcareous structures. Invertebrates are distributed according to the distance from the high venting zone and low pH levels and results very consistent between the two investigated years. In the low-pH area (B3), 43% of the species are selected. The functional traits of the fauna mirror this zonation pattern, mainly changing the relative proportion of the number of individuals of the various functional guilds along the OA gradient. Invertebrates inhabiting the low-pH zone are mainly composed of weakly or non-calcified species, with small size, burrower/tubicolous habit, omnivorous or suspension feeders, and with direct development and brooding habit. In the other stations, heavily calcified forms, herbivore and herbivore/detritivore, and with medium (1–5 cm) and large (>5 cm) sizes prevail, showing indirect benthic and planktic development. The taxonomic analysis, coupled with functional aspects, increases our prediction of which traits could be potentially more advantageous for species to adapt to the hypothesized scenarios of OA, and identify present and future winner and/or loser organisms in the future ocean of the Anthropocene.
Collapse
|
18
|
Ecological and Biotechnological Relevance of Mediterranean Hydrothermal Vent Systems. MINERALS 2022. [DOI: 10.3390/min12020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Marine hydrothermal systems are a special kind of extreme environments associated with submarine volcanic activity and characterized by harsh chemo-physical conditions, in terms of hot temperature, high concentrations of CO2 and H2S, and low pH. Such conditions strongly impact the living organisms, which have to develop adaptation strategies to survive. Hydrothermal systems have attracted the interest of researchers due to their enormous ecological and biotechnological relevance. From ecological perspective, these acidified habitats are useful natural laboratories to predict the effects of global environmental changes, such as ocean acidification at ecosystem level, through the observation of the marine organism responses to environmental extremes. In addition, hydrothermal vents are known as optimal sources for isolation of thermophilic and hyperthermophilic microbes, with biotechnological potential. This double aspect is the focus of this review, which aims at providing a picture of the ecological features of the main Mediterranean hydrothermal vents. The physiological responses, abundance, and distribution of biotic components are elucidated, by focusing on the necto-benthic fauna and prokaryotic communities recognized to possess pivotal role in the marine ecosystem dynamics and as indicator species. The scientific interest in hydrothermal vents will be also reviewed by pointing out their relevance as source of bioactive molecules.
Collapse
|
19
|
Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY, Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh YW, Hui J, Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K, Raible F, Arendt D. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021; 12:10. [PMID: 34579780 PMCID: PMC8477482 DOI: 10.1186/s13227-021-00180-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
Collapse
Affiliation(s)
- B. Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Nadine Randel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Elizabeth A. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Guillaume Balavoine
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Paola Y. Bertucci
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David E. K. Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | | | - Eve Gazave
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jörg Hardege
- Department of Biological & Marine Sciences, Hull University, Cottingham Road, Hull, HU67RX UK
| | - Cameron Hird
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Yu-Wen Hsieh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Q. Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hernando M. Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, Howland Street 25, London, W1T 4JG UK
| | - Michel Vervoort
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | | | - Florian Raible
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
David AA. Climate Change and Shell-Boring Polychaetes (Annelida: Spionidae): Current State of Knowledge and the Need for More Experimental Research. THE BIOLOGICAL BULLETIN 2021; 241:4-15. [PMID: 34436967 DOI: 10.1086/714989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractAnthropogenic climate change is considered to be one of the greatest threats facing marine biodiversity. The vast majority of experimental work investigating the effects of climate change stressors on marine organisms has focused on calcifying organisms, such as corals and molluscs, where cross-generational phenotypic changes can be easily quantified. Bivalves in particular have been the subject of numerous climate change studies, in part because of their economic value in the aquaculture industry and their important roles as ecosystem engineers. However, there has been little to no work investigating the effects of these stressors on the symbionts associated with these bivalves, specifically, their shell-boring polychaete parasites. This is important to understand because climate change may shift the synergistic relationship between parasite and host based on the individual responses of each. If such a shift favors proliferation of the polychaete, it may very well facilitate extinction of host bivalve populations. In this review I will (i) provide an overview of research completed thus far on the effects of climate change stressors on shell-boring polychaetes, (ii) discuss the technical challenges of studying these parasites in the laboratory, and (iii) propose a standardized framework for carrying out future in vitro and in vivo climate change experiments on shell-boring polychaetes.
Collapse
|
21
|
Environmental stressors, complex interactions and marine benthic communities' responses. Sci Rep 2021; 11:4194. [PMID: 33603048 PMCID: PMC7892560 DOI: 10.1038/s41598-021-83533-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The increasing number and diversity of anthropogenic stressors in marine habitats have multiple negative impacts on biological systems, biodiversity and ecosystem functions. Methods to assess cumulative effects include experimental manipulations, which may identify non-linear responses (i.e. synergies, antagonisms). However, experiments designed to test these ideas are uncommon, generally focusing on single biological responses. We conducted a manipulative experiment to investigate the isolated and combined effects of warming (+ 6 °C), salinity variation (freshwater pulses or presses), and nutrient enrichment (natural or enriched) following one and three month's exposure, on responses measured at multiple levels of biological complexity in a simple bivalve assemblage. More specifically, we determined effects on bivalve mortality, growth, shell mineralization, and energy content, as well as microphytobenthos biomass. Salinity variation and nutrient enrichment, individually and combined, caused strong impacts on some of the measured variables and their effect varied through time. In contrast, warming had no effect. Our work highlights the prevalence of antagonistic interactions, the importance of examining effects of single and multiple stressors through time, and of considering multiple responses to understand the complexity behind stressor interactions.
Collapse
|
22
|
Jahnsen-Guzmán N, Lagos NA, Lardies MA, Vargas CA, Fernández C, San Martín VA, Saavedra L, Cuevas LA, Quijón PA, Duarte C. Environmental refuges increase performance of juvenile mussels Mytilus chilensis: Implications for mussel seedling and farming strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141723. [PMID: 32892078 DOI: 10.1016/j.scitotenv.2020.141723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Estuarine ecosystems are characterized by a wide physical-chemical variation that in the context of global change scenarios may be exacerbated in the future. The fitness of resident organisms is expected to be influenced by such variation and, hence, its study is a priority. Some of that variation relates to water vertical stratification, which may create "environmental refuges" or distinct layers of water with conditions favoring the fitness of some individuals and species. This study explored the performance of juvenile mussels (M. chilensis) settled in two distinctive water depths (1 m and 4 m) of the Reloncaví fjord (southern Chile) by conducting a reciprocal transplants experiment. Salinity, saturation state and the contents of CO3 in seawater were among the factors that best explained the differences between the two layers. In such environmental conditions, the mussel traits that responded to such variation were growth and calcification rates, with significantly higher values at 4 m deep, whereas the opposite, increased metabolic stress, was higher in mussels raised and transplanted to the surface waters (1 m). Such differences support the notion of an environmental refuge, where species like mussels can find better growth conditions and achieve higher performance levels. These results are relevant considering the importance of M. chilensis as a shellfish resource for aquaculture and a habitat forming species. In addition, these results shed light on the variable responses exhibited by estuarine organisms to small-scale changes in the characteristics of the water column, which in turn will help to better understand the responses of the organisms to the projected scenarios of climate global change.
Collapse
Affiliation(s)
- N Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - N A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile
| | - M A Lardies
- Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile; Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - C A Vargas
- Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCA Lab), Department of Aquatic Systems, Faculty of Environmental Sciences, & Environmental Sciences Center EULA Chile, Universidad de Concepción, Concepción, Chile; Millennium Institute of Oceanography (IMO), Universidad de Concepción, Concepción, Chile
| | - C Fernández
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - V A San Martín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCA Lab), Department of Aquatic Systems, Faculty of Environmental Sciences, & Environmental Sciences Center EULA Chile, Universidad de Concepción, Concepción, Chile
| | - L Saavedra
- Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCA Lab), Department of Aquatic Systems, Faculty of Environmental Sciences, & Environmental Sciences Center EULA Chile, Universidad de Concepción, Concepción, Chile
| | - L Antonio Cuevas
- Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCA Lab), Department of Aquatic Systems, Faculty of Environmental Sciences, & Environmental Sciences Center EULA Chile, Universidad de Concepción, Concepción, Chile
| | - P A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - C Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
23
|
Brown J, Whiteley NM, Bailey AM, Graham H, Hop H, Rastrick SPS. Contrasting responses to salinity and future ocean acidification in arctic populations of the amphipod Gammarus setosus. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105176. [PMID: 33096461 DOI: 10.1016/j.marenvres.2020.105176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Climate change is leading to alterations in salinity and carbonate chemistry in arctic/sub-arctic marine ecosystems. We examined three nominal populations of the circumpolar arctic/subarctic amphipod, Gammarus setosus, along a salinity gradient in the Kongsfjorden-Krossfjorden area of Svalbard. Field and laboratory experiments assessed physiological (haemolymph osmolality and gill Na+/K+-ATPase activity, NKA) and energetic responses (metabolic rates, MO2, and Cellular Energy Allocation, CEA). In the field, all populations had similar osmregulatory capacities and MO2, but lower-salinity populations had lower CEA. Reduced salinity (S = 23) and elevated pCO2 (~1000 μatm) in the laboratory for one month increased gill NKA activities and reduced CEA in all populations, but increased MO2 in the higher-salinity population. Elevated pCO2 did not interact with salinity and had no effect on NKA activities or CEA, but reduced MO2 in all populations. Reduced CEA in lower-rather than higher-salinity populations may have longer term effects on other energy demanding processes (growth and reproduction).
Collapse
Affiliation(s)
- James Brown
- Department of Biological Sciences, University of Chester, Thomas Building, Parkgate Road, Chester, CH1 4BJ, UK.
| | - Nia M Whiteley
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd. LL57 2UW, UK
| | | | - Helen Graham
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Haakon Hop
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | |
Collapse
|
24
|
Klepac CN, Barshis DJ. Reduced thermal tolerance of massive coral species in a highly variable environment. Proc Biol Sci 2020; 287:20201379. [PMID: 32811319 DOI: 10.1098/rspb.2020.1379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Coral bleaching events are increasing in frequency and severity, resulting in widespread losses in coral cover. However, branching corals native to highly variable (HV) thermal environments can have higher bleaching resistance than corals from more moderate habitats. Here, we investigated the response of two massive corals, Porites lobata and Goniastrea retiformis, from a moderately variable (MV) and a low variability (LV) pool transplanted into a HV pool on Ofu Island in American Samoa. Paired transplant and native ramets were exposed to an acute thermal stress after 6 and 12 months of exposure to the HV pool to evaluate changes in thermal tolerance limits. For both species, photosynthetic efficiency and chlorophyll loss following acute heat stress did not differ between ramets transplanted into the HV pool and respective native pool. Moreover, HV native P. lobata exhibited the greatest bleaching susceptibility compared to MV and LV natives and there was no effect of acute heat stress on MV P. lobata. There was also a thermal anomaly during the study, where Ofu's backreef thermal regime surpassed historical records-2015 had 8 degree heating weeks (DHW) and 2016 had up to 5 DHW (in comparison to less than or equal to 3 over the last 10 years)-which may have exceeded the upper thermal limits of HV native P. lobata. These results strongly contrast with other research on coral tolerance in variable environments, potentially underscoring species-specific mechanisms and regional thermal anomalies that may be equally important in shaping coral responses to extreme temperatures.
Collapse
Affiliation(s)
- C N Klepac
- Department of Biology, Old Dominion University, Norfolk, VA 23529, USA
| | - D J Barshis
- Department of Biology, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
25
|
Foo SA, Koweek DA, Munari M, Gambi MC, Byrne M, Caldeira K. Responses of sea urchin larvae to field and laboratory acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138003. [PMID: 32217382 DOI: 10.1016/j.scitotenv.2020.138003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Understanding the extent to which laboratory findings of low pH on marine organisms can be extrapolated to the natural environment is key toward making better projections about the impacts of global change on marine ecosystems. We simultaneously exposed larvae of the sea urchin Arbacia lixula to ocean acidification in laboratory and natural CO2 vents and assessed the arm growth response as a proxy of net calcification. Populations of embryos were simultaneously placed at both control and volcanic CO2 vent sites in Ischia (Italy), with a parallel group maintained in the laboratory in control and low pH treatments corresponding to the mean pH levels of the field sites. As expected, larvae grown at constant low pH (pHT 7.8) in the laboratory exhibited reduced arm growth, but counter to expectations, the larvae that developed at the low pH vent site (pHT 7.33-7.99) had the longest arms. The larvae at the control field site (pHT 7.87-7.99) grew at a similar rate to laboratory controls. Salinity, temperature, oxygen and flow regimes were comparable between control and vent sites; however, chlorophyll a levels and particulate organic carbon were higher at the vent site than at the control field site. This increased food availability may have modulated the effects of low pH, creating an opposite calcification response in the laboratory from that in the field. Divergent responses of the same larval populations developing in laboratory and field environments show the importance of considering larval phenotypic plasticity and the complex interactions among decreased pH, food availability and larval responses.
Collapse
Affiliation(s)
- Shawna A Foo
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA; Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ 85287, USA.
| | - David A Koweek
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077, Ischia(Naples), Italy
| | - Maria Cristina Gambi
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077, Ischia(Naples), Italy
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ken Caldeira
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Dinh KV, Dinh HT, Pham HT, Selck H, Truong KN. Development of metal adaptation in a tropical marine zooplankton. Sci Rep 2020; 10:10212. [PMID: 32576953 PMCID: PMC7311422 DOI: 10.1038/s41598-020-67096-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tropical marine ecosystems are highly vulnerable to pollution and climate change. It is relatively unknown how tropical species may develop an increased tolerance to these stressors and the cost of adaptations. We addressed these issues by exposing a keystone tropical marine copepod, Pseudodiaptomus annandalei, to copper (Cu) for 7 generations (F1–F7) during three treatments: control, Cu and pCu (the recovery treatment). In F7, we tested the “contaminant-induced climate change sensitivity” hypothesis (TICS) by exposing copepods to Cu and extreme temperature. We tracked fitness and productivity of all generations. In F1, Cu did not affect survival and grazing but decreased nauplii production. In F2-F4, male survival, grazing, and nauplii production were lower in Cu, but recovered in pCu, indicating transgenerational plasticity. Strikingly, in F5-F6 nauplii production of Cu-exposed females increased, and did not recover in pCu. The earlier result suggests an increased Cu tolerance while the latter result revealed its cost. In F7, extreme temperature resulted in more pronounced reductions in grazing, and nauplii production of Cu or pCu than in control, supporting TICS. The results suggest that widespread pollution in tropical regions may result in high vulnerability of species in these regions to climate change.
Collapse
Affiliation(s)
- Khuong V Dinh
- School of Biological Sciences, Washington State University, Pullman, WA, USA. .,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark. .,Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Vietnam.
| | - Hanh T Dinh
- Northern National Broodstock Center for Mariculture, Research Institute for Aquaculture No 1, Xuan Dam Commune, Cat Ba, Hai Phong, Vietnam
| | - Hong T Pham
- Department of Environmental Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Kiem N Truong
- Department of Ecology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam.
| |
Collapse
|
27
|
Small DP, Calosi P, Rastrick SPS, Turner LM, Widdicombe S, Spicer JI. The effects of elevated temperature and PCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus. J Exp Biol 2020; 223:223/8/jeb209221. [DOI: 10.1242/jeb.209221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/01/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Regulation of extracellular acid–base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2. At 13°C, H. gammarus juveniles were able to fully compensate for acid–base disturbances caused by the exposure to elevated seawater PCO2 at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3−] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2, indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid–base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.
Collapse
Affiliation(s)
- Daniel P. Small
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | | | - Lucy M. Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon PL1 3DH, UK
| | - John I. Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
28
|
Kumar A, Buia MC, Palumbo A, Mohany M, Wadaan MAM, Hozzein WN, Beemster GTS, AbdElgawad H. Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO 2 vents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113765. [PMID: 31884208 DOI: 10.1016/j.envpol.2019.113765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
We utilized volcanic CO2 vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO2 on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India; Sathyabama Marine Research Station, 123 Sallimalai Street, Rameswaram, India.
| | - Maria Cristina Buia
- Center of Villa Dohrn Ischia - Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Wesselmann M, Anton A, Duarte CM, Hendriks IE, Agustí S, Savva I, Apostolaki ET, Marbà N. Tropical seagrass Halophila stipulacea shifts thermal tolerance during Mediterranean invasion. Proc Biol Sci 2020; 287:20193001. [PMID: 32156215 PMCID: PMC7126082 DOI: 10.1098/rspb.2019.3001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Exotic species often face new environmental conditions that are different from those that they are adapted to. The tropical seagrass Halophila stipulacea is a Lessepsian migrant that colonized the Mediterranean Sea around 100 years ago, where at present the minimum seawater temperature is cooler than in its native range in the Red Sea. Here, we tested if the temperature range in which H. stipulacea can exist is conserved within the species or if the exotic populations have shifted their thermal breadth and optimum due to the cooler conditions in the Mediterranean. We did so by comparing the thermal niche (e.g. optimal temperatures, and upper and lower thermal limits) of native (Saudi Arabia in the Red Sea) and exotic (Greece and Cyprus in the Mediterranean Sea) populations of H. stipulacea. We exposed plants to 12 temperature treatments ranging from 8 to 40°C for 7 days. At the end of the incubation period, we measured survival, rhizome elongation, shoot recruitment, net population growth and metabolic rates. Upper and lower lethal thermal thresholds (indicated by 50% plant mortality) were conserved across populations, but minimum and optimal temperatures for growth and oxygen production were lower for Mediterranean populations than for the Red Sea one. The displacement of the thermal niche of exotic populations towards the colder Mediterranean Sea regime could have occurred within 175 clonal generations.
Collapse
Affiliation(s)
- Marlene Wesselmann
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Andrea Anton
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos M. Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Iris E. Hendriks
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| | - Susana Agustí
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ioannis Savva
- Marine and Environmental Research (MER) Lab, Limassol 4533, Cyprus
| | - Eugenia T. Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003 Heraklion, Crete, Greece
| | - Núria Marbà
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain
| |
Collapse
|
30
|
Jarrold MD, Chakravarti LJ, Gibbin EM, Christen F, Massamba-N'Siala G, Blier PU, Calosi P. Life-history trade-offs and limitations associated with phenotypic adaptation under future ocean warming and elevated salinity. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180428. [PMID: 30966961 DOI: 10.1098/rstb.2018.0428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Little is known about the life-history trade-offs and limitations, and the physiological mechanisms that are associated with phenotypic adaptation to future ocean conditions. To address this knowledge gap, we investigated the within- and trans-generation life-history responses and aerobic capacity of a marine polychaete, Ophryotrocha labronica, to elevated temperature and elevated temperature combined with elevated salinity for its entire lifespan. In addition, transplants between treatments were carried out at both the egg mass and juvenile stage to identify the potential influence of developmental effects. Within-generation, life-history trade-offs caused by the timing of transplant were only detected under elevated temperature combined with elevated salinity conditions. Polychaetes transplanted at the egg mass stage grew slower and had lower activities of energy metabolism enzymes but reached a larger maximum body size and lived longer when compared with those transplanted as juveniles. Trans-generation exposure to both elevated temperature and elevated temperature and salinity conditions restored 20 and 21% of lifespan fecundity, respectively. Trans-generation exposure to elevated temperature conditions also resulted in a trade-off between juvenile growth rates and lifespan fecundity, with slower growers showing greater fecundity. Overall, our results suggest that future ocean conditions may select for slower growers. Furthermore, our results indicate that life-history trade-offs and limitations will be more prevalent with the shift of multiple global change drivers, and thus there will be greater constraints on adaptive potential. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Michael D Jarrold
- 1 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1.,2 College of Science and Engineering, James Cook University , Townsville, Queensland 4811 , Australia
| | - Leela J Chakravarti
- 1 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1.,2 College of Science and Engineering, James Cook University , Townsville, Queensland 4811 , Australia
| | - Emma M Gibbin
- 1 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1.,3 Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Felix Christen
- 1 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
| | - Gloria Massamba-N'Siala
- 1 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1.,4 Centre d'Écologie Fonctionnelle et Evolutive (CEFE-CNRS) , UMR 5175, Montpellier Cedex 5 , France
| | - Pierre U Blier
- 1 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
| | - Piero Calosi
- 1 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
| |
Collapse
|
31
|
Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zool 2020; 17:7. [PMID: 32095155 PMCID: PMC7027112 DOI: 10.1186/s12983-020-0350-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/06/2020] [Indexed: 01/16/2023] Open
Abstract
For nearly a decade, the metazoan-focused research community has explored the impacts of ocean acidification (OA) on marine animals, noting that changes in ocean chemistry can impact calcification, metabolism, acid-base regulation, stress response and behavior in organisms that hold high ecological and economic value. Because OA interacts with several key physiological processes in marine organisms, transcriptomics has become a widely-used method to characterize whole organism responses on a molecular level as well as inform mechanisms that explain changes in phenotypes observed in response to OA. In the past decade, there has been a notable rise in studies that examine transcriptomic responses to OA in marine metazoans, and here we attempt to summarize key findings across these studies. We find that organisms vary dramatically in their transcriptomic responses to pH although common patterns are often observed, including shifts in acid-base ion regulation, metabolic processes, calcification and stress response mechanisms. We also see a rise in transcriptomic studies examining organismal response to OA in a multi-stressor context, often reporting synergistic effects of OA and temperature. In addition, there is an increase in studies that use transcriptomics to examine the evolutionary potential of organisms to adapt to OA conditions in the future through population and transgenerational experiments. Overall, the literature reveals complex organismal responses to OA, in which some organisms will face more dramatic consequences than others. This will have wide-reaching impacts on ocean communities and ecosystems as a whole.
Collapse
Affiliation(s)
- Marie E Strader
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,2Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Juliet M Wong
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,3Present address: Department of Biological Sciences, Florida International University, North Miami, FL 33181 USA
| | - Gretchen E Hofmann
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
32
|
Cassidy C, Grange LJ, Garcia C, Bolam SG, Godbold JA. Species interactions and environmental context affect intraspecific behavioural trait variation and ecosystem function. Proc Biol Sci 2020; 287:20192143. [PMID: 31992167 DOI: 10.1098/rspb.2019.2143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.
Collapse
Affiliation(s)
- Camilla Cassidy
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Laura J Grange
- School of Ocean Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Clement Garcia
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Stefan G Bolam
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Jasmin A Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
33
|
Kara J, Santos CSG, Macdonald AHH, Simon CA. Resolving the taxonomic identities and genetic structure of two cryptic Platynereis Kinberg species from South Africa. INVERTEBR SYST 2020. [DOI: 10.1071/is19072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The perceived cosmopolitanism of polychaete worms could be an artefact of historical factors such as poor original species descriptions, lack of type material and the European taxonomic bias, to name a few. Thus, it is possible that several cosmopolitan species hide complexes of cryptic and pseudocryptic species. Two putative cosmopolitan species, Platynereis dumerilii and Platynereis australis, collected in South Africa were investigated here (1) to determine whether the South African taxa are conspecific with the morphologically identical taxa from France and New Zealand (the respective type localities of P. dumerilii and P. australis), (2) to compare the South African species morphometrically to determine whether their morphological characters are reliable enough to separate them, and (3) to investigate whether these species have geographically structured populations along the coast of South Africa. Molecular data (COI and ITS1) confirm that P. dumerilii and P. australis do not occur in South Africa. Instead, the South African taxon formerly thought to be Platynereis dumerilii is new and is described here as Platynereis entshonae, sp. nov.; the identity of the other South African species is currently unresolved and is treated here as Platynereis sp. Surprisingly, Platynereis massiliensis (type locality: Marseilles) nested within the South African Platynereissp. clade but, since it is part of a cryptic species complex in the Mediterranean, the name is considered doubtful. Morphological characters traditionally used to define these South African Platynereis species are not reliable as predefined morphological groupings do not match phylogenetic clades and principal component scores revealed no separation in morphological characters that could distinguish between them. Haplotype networks and phylogenetic trees revealed that P. entshonae, sp. nov. and Platynereis sp. have geographically structured populations along the South African coast. http://zoobank.org/urn:lsid:zoobank.org:pub:6E36A210-9E48-430F-8A93-EDC27F0C5631
Collapse
|
34
|
Conradi M, Sánchez-Moyano JE, Bhuiyan MKA, Rodríguez-Romero A, Galotti A, Basallote MD, DelValls A, Parra G, Riba I. Intraspecific variation in the response of the estuarine European isopod Cyathura carinata (Krøyer, 1847) to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:134-145. [PMID: 31129324 DOI: 10.1016/j.scitotenv.2019.05.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
In the present study the model isopod, Cyathura carinata were exposed to four pHNIST treatments (control: 7.9; 7.5, 7, 6.5) in order to determine the tolerance and pH threshold value this estuarine species withstand under future acidification scenarios. Seawater acidification significantly affected the lifespan of C. carinata, where population density was remarkably reduced at the lowest pH treatment. The longevity, survivorship and swimming activity (related to the acquisition of energy) of these isopods decreased with decreasing pH. Furthermore, to determine the possible metabolic plasticity of this species, the swimming activity, the Na+/K + -ATPase activity (relevant for osmoregulation process), and the RNA:DNA ratio (an indicator of fitness) were measure from two populations of C. carinata, one inhabiting a stable environment (pHNIST 7.5-8.0) and one inhabiting a fluctuating pCO2 regimes (pH 3.3-8.5) subjected to three pH treatments (7.9, 7.0 and 6.5). The population from high fluctuating pCO2 conditions showed capacity to withstand to pH 6.5, as well as higher longevity and metabolic plasticity, when compared with the population from the habitat with slight pCO2 variation. These results indicate that Cyathura population from stable environments could be vulnerable to ocean acidification because it could trigger detrimental effects on its survival energy budget, and growth. However, ocean acidification has limited effect on the energy budget and survival of C. carinata population from highly variable habitats, suggesting that they are able to cope with the elevated energy demand. The difference showed between populations is likely an indication of genetic differentiation in tolerance to ocean acidification, possibly attributable to local adaptations, which could provide the raw material necessary for adaptation to future conditions. In addition, our results suggest that when assessing marine crustacean responses to changing environments on a global scale, variability in population and metabolic responses need to be considered.
Collapse
Affiliation(s)
- M Conradi
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av Reina Mercedes s/n, 41012 Sevilla. Spain.
| | - J E Sánchez-Moyano
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av Reina Mercedes s/n, 41012 Sevilla. Spain
| | - M K A Bhuiyan
- UNESCO UNITWIN/UNICOP, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, PG Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - A Rodríguez-Romero
- Green Engineering Resources Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos (ETSIIT), Universidad de Cantabria, Cantabria, Spain
| | - A Galotti
- Departamento de Biología Animal, Vegetal y Ecología, Centro de Estudios Avanzados en Ciencias de la Tierra, Universidad de Jaén, Jaén, Spain
| | - M D Basallote
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, Faculty of Experimental Sciences, Avda. Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - A DelValls
- UNESCO UNITWIN/UNICOP, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, PG Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - G Parra
- Departamento de Biología Animal, Vegetal y Ecología, Centro de Estudios Avanzados en Ciencias de la Tierra, Universidad de Jaén, Jaén, Spain
| | - I Riba
- UNESCO UNITWIN/UNICOP, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, PG Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
35
|
Ocean acidification effects on in situ coral reef metabolism. Sci Rep 2019; 9:12067. [PMID: 31427632 PMCID: PMC6700128 DOI: 10.1038/s41598-019-48407-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
The Anthropocene climate has largely been defined by a rapid increase in atmospheric CO2, causing global climate change (warming) and ocean acidification (OA, a reduction in oceanic pH). OA is of particular concern for coral reefs, as the associated reduction in carbonate ion availability impairs biogenic calcification and promotes dissolution of carbonate substrata. While these trends ultimately affect ecosystem calcification, scaling experimental analyses of the response of organisms to OA to consider the response of ecosystems to OA has proved difficult. The benchmark of ecosystem-level experiments to study the effects of OA is provided through Free Ocean CO2 Enrichment (FOCE), which we use in the present analyses for a 21-d experiment on the back reef of Mo’orea, French Polynesia. Two natural coral reef communities were incubated in situ, with one exposed to ambient pCO2 (393 µatm), and one to high pCO2 (949 µatm). Our results show a decrease in 24-h net community calcification (NCC) under high pCO2, and a reduction in nighttime NCC that attenuated and eventually reversed over 21-d. This effect was not observed in daytime NCC, and it occurred without any effect of high pCO2 on net community production (NCP). These results contribute to previous studies on ecosystem-level responses of coral reefs to the OA conditions projected for the end of the century, and they highlight potential attenuation of high pCO2 effects on nighttime net community calcification.
Collapse
|
36
|
Migliaccio O, Pinsino A, Maffioli E, Smith AM, Agnisola C, Matranga V, Nonnis S, Tedeschi G, Byrne M, Gambi MC, Palumbo A. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO 2 vent system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:938-950. [PMID: 30981169 DOI: 10.1016/j.scitotenv.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The effects of ocean acidification, a major anthropogenic impact on marine life, have been mainly investigated in laboratory/mesocosm experiments. We used the CO2 vents at Ischia as a natural laboratory to study the long-term effects of ocean acidification on the sea urchin Paracentrotus lividus population resident in low-pH (7.8 ± 0.2) compared to that at two control sites (pH 8.02 ± 0.00; 8.02 ± 0.01). The novelty of the present study is the analysis of the sea urchin immune cells, the sentinels of environmental stress responses, by a wide-ranging approach, including cell morphology, biochemistry and proteomics. Immune cell proteomics showed that 311 proteins were differentially expressed in urchins across sites with a general shift towards antioxidant processes in the vent urchins. The vent urchin immune cells showed higher levels of total antioxidant capacity, up-regulation of phagosome and microsomal proteins, enzymes of ammonium metabolism, amino-acid degradation, and modulation of carbon metabolism proteins. Lipid-hydroperoxides and nitric oxide levels were not different in urchins from the different sites. No differences in the coelomic fluid pH, immune cell composition, animal respiration, nitrogen excretion and skeletal mineralogy were observed. Our results reveal the phenotypic plasticity of the immune system of sea urchins adapted to life at vent site, under conditions commensurate with near-future ocean acidification projections.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Annalisa Pinsino
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Elisa Maffioli
- DIMEVET - Section of Biochemistry, University of Milan, Milan, Italy
| | - Abigail M Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valeria Matranga
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Simona Nonnis
- DIMEVET - Section of Biochemistry, University of Milan, Milan, Italy
| | | | - Maria Byrne
- School of Medical and Science and School of Life and Environmental Science, University of Sydney, Sydney, Australia
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (Villa Dohrn-Benthic Ecology Center), Ischia, Naples, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy.
| |
Collapse
|
37
|
Dobretsov S, Coutinho R, Rittschof D, Salta M, Ragazzola F, Hellio C. The oceans are changing: impact of ocean warming and acidification on biofouling communities. BIOFOULING 2019; 35:585-595. [PMID: 31282218 DOI: 10.1080/08927014.2019.1624727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Climate change (CC) is driving modification of the chemical and physical properties of estuaries and oceans with profound consequences for species and ecosystems. Numerous studies investigate CC effects from species to ecosystem levels, but little is known of the impacts on biofilm communities and on bioactive molecules such as cues, adhesives and enzymes. CC is induced by anthropogenic activity increasing greenhouse emissions leading to rises in air and water temperatures, ocean acidification, sea level rise and changes in ocean gyres and rainfall patterns. These environmental changes are resulting in alterations within marine communities and changes in species ranges and composition. This review provides insights and synthesis of knowledge about the effect of elevated temperature and ocean acidification on microfouling communities and bioactive molecules. The existing studies suggest that CC will impact production of bioactive compounds as well as the growth and composition of biofouling communities. Undoubtedly, with CC fouling management will became an even greater challenge.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Marine Science and Fisheries Department, College of Agricultural and Marine Sciences, Sultan Qaboos University , Sultanate of Oman
- Centre of Excellence in Marine Biotechnology, Sultan Qaboos University , Sultanate of Oman
| | - Ricardo Coutinho
- Instituto de Estudos do Mar Almirante Paulo Moreira , Praia dos Anjos, Arraial do Cabo , RJ , Brazil
| | - Daniel Rittschof
- Nicholas School, Duke University Marine Laboratory , Beaufort USA
| | - Maria Salta
- School of Biological Sciences, University of Portsmouth , Portsmouth , UK
| | - Federica Ragazzola
- School of Biological Sciences, University of Portsmouth , Portsmouth , UK
| | - Claire Hellio
- Laboratoire des Sciences de l'Envionnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer , Plouzané , France
| |
Collapse
|
38
|
Doubleday ZA, Nagelkerken I, Coutts MD, Goldenberg SU, Connell SD. A triple trophic boost: How carbon emissions indirectly change a marine food chain. GLOBAL CHANGE BIOLOGY 2019; 25:978-984. [PMID: 30500999 DOI: 10.1111/gcb.14536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The pervasive enrichment of CO2 in our oceans is a well-documented stressor to marine life. Yet, there is little understanding about how CO2 affects species indirectly in naturally complex communities. Using natural CO2 vents, we investigated the indirect effects of CO2 enrichment through a marine food chain. We show how CO2 boosted the biomass of three trophic levels: from the primary producers (algae), through to their grazers (gastropods), and finally through to their predators (fish). We also found that consumption by both grazers and predators intensified under CO2 enrichment, but, ultimately, this top-down control failed to compensate for the boosted biomass of both primary producers and herbivores (bottom-up control). Our study suggests that indirect effects can buffer the ubiquitous and direct, negative effects of CO2 enrichment by allowing the upward propagation of resources through the food chain. Maintaining the natural complexity of food webs in our ocean communities could, therefore, help minimize the future impacts of CO2 enrichment.
Collapse
Affiliation(s)
- Zoë A Doubleday
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Ivan Nagelkerken
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Madeleine D Coutts
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Silvan U Goldenberg
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| | - Sean D Connell
- School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
39
|
Del Pasqua M, Gambi MC, Caricato R, Lionetto MG, Giangrande A. Effects of short-term and long-term exposure to ocean acidification on carbonic anhydrase activity and morphometric characteristics in the invasive polychaete Branchiomma boholense (Annelida: Sabellidae): A case-study from a CO 2 vent system. MARINE ENVIRONMENTAL RESEARCH 2019; 144:203-212. [PMID: 30709638 DOI: 10.1016/j.marenvres.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to test the effects of short- and long-term exposure to high pCO2 on the invasive polychaete Branchiomma boholense (Grube, 1878), (Sabellidae), through the implementation of a transplant experiment at the CO2 vents of the Castello Aragonese at the island of Ischia (Italy). Analysis of carbonic anhydrase (CA) activity, protein tissue content and morphometric characteristics were performed on transplanted individuals (short-term exposure) as well as on specimens resident to both normal and low pH/high pCO2 environments (long-term exposure). Results obtained on transplanted worms showed no significant differences in CA activity between individuals exposed to control and acidified conditions, while a decrease in weight was observed under short-term acclimatization to both control and low pH, although at low pH the decrease was more pronounced (∼20%). As regard individuals living under chronic exposure to high pCO2, the morphometric results revealed a significantly lower (70%) wet weight of specimens from the vents with respect to animals living in high pH/low pCO2 areas. Moreover, individuals living in the Castello vents showed doubled values of enzymatic activity and a significantly higher (50%) protein tissue content compared to specimens native from normal pH/low pCO2. The results of this study demonstrated that B. boholense is inclined to maintain a great homeostatic capacity when exposed to low pH, although likely at the energetic expense of other physiological processes such as growth, especially under chronic exposure to high pCO2.
Collapse
Affiliation(s)
- Michela Del Pasqua
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy.
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn di Napoli, Department of Integrative Marine Ecology, Villa Dohrn- Benthic Ecology Center, Punta S. Pietro, 80077, Ischia (Napoli), Italy
| | - Roberto Caricato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy; Stazione Zoologica Anton Dohrn di Napoli, Department of Integrative Marine Ecology, Villa Dohrn- Benthic Ecology Center, Punta S. Pietro, 80077, Ischia (Napoli), Italy
| |
Collapse
|
40
|
Calosi P, Putnam HM, Twitchett RJ, Vermandele F. Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:369-390. [PMID: 30216738 DOI: 10.1146/annurev-marine-010318-095106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Evolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of ( a) changes in biodiversity of ancient marine ecosystems to past extinctions events, ( b) the patterns of sensitivity and biodiversity loss in modern marine taxa, and ( c) the physiological mechanisms underpinning species' sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada; ,
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| | - Richard J Twitchett
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom;
| | - Fanny Vermandele
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada; ,
| |
Collapse
|
41
|
Díaz-Castañeda V, Cox TE, Gazeau F, Fitzer S, Delille J, Alliouane S, Gattuso JP. Ocean acidification affects calcareous tube growth in adult stage and reared offspring of serpulid polychaetes. J Exp Biol 2019; 222:jeb.196543. [DOI: 10.1242/jeb.196543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
The energetically costly transition from free-swimming larvae to benthic life stage and maintenance of a calcareous structure can make calcifying marine invertebrates vulnerable to ocean acidification. The first goal of this study was to evaluate the impacts of ocean acidification on calcified tube growth for two Serpulidae polychaete worms. Spirorbis sp. and Spirobranchus triqueter were collected at 11 m depth from the Northwest Mediterranean Sea and maintained for 30 and 90 d, at three mean pHT levels (total scale) of 8.1 (ambient), 7.7, and 7.4. Moderately decreased tube elongation rates were observed in both species at a pHT of 7.7 while severe reductions occurred at pHT 7.4. There was visual evidence of dissolution and tubes were more fragile at lower pH but, fragility was not attributed to changes in fracture toughness. Instead, it appeared to be due to the presence of larger alveoli covered in a thinner calcareous layer. The second objective of the study was to test for effects in offspring development of the species S. triqueter. Spawning was induced, and offspring were reared in the same pH conditions the parents experienced. Trochophore size was reduced at the lowest pH level but settlement success was similar across pH conditions. Post-settlement tube growth was most affected. At 38 d post-settlement, juvenile tubes at pHT of 7.7 and 7.4 were half the size of those at pHT 8.1. Results suggest future carbonate chemistry will negatively affect initiation and persistence of both biofouling and epiphytic polychaete tube worms.
Collapse
Affiliation(s)
- V. Díaz-Castañeda
- Centro de Investigación Científica y Educación Superior de Ensenada, Departmento de Ecología Marina. Carret. Tij. - Ensenada 3918, C.P. 22860 Ensenada, Baja California, México
| | - T. E. Cox
- University of New Orleans, Department of Biological Sciences 2000 Lakeshore Drive New Orleans, LA, 70148 USA
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - F. Gazeau
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - S. Fitzer
- Institute of Aquaculture, University of Stirling, FK9 4LA, Scotland, UK
| | - J. Delille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - S. Alliouane
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - J.-P. Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| |
Collapse
|
42
|
Menu-Courey K, Noisette F, Piedalue S, Daoud D, Blair T, Blier PU, Azetsu-Scott K, Calosi P. Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO 2. MARINE ENVIRONMENTAL RESEARCH 2019; 143:111-123. [PMID: 30477878 DOI: 10.1016/j.marenvres.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
The transition from the last pelagic larval stage to the first benthic juvenile stage in the complex life cycle of marine invertebrates, such as the American lobster Homarus americanus, a species of high economic importance, represents a delicate phase in these species development. Under future elevated pCO2 conditions, ocean acidification and other elevated pCO2 events can negatively affect crustaceans. This said their effects on the benthic settlement phase are virtually unknown. This study aimed to identify the effects of elevated seawater pCO2 on stage V American lobsters exposed to seven pCO2 levels. The survival, development time, metabolic and feeding rates, carapace composition, and energy metabolism enzyme function were investigated. Results suggested an increase in mortality, slower development and an increase in aerobic capacity with increasing pCO2. Our study points to potential reduction in juvenile recruitment success as seawater pCO2 increases, thus foreshadowing important socio-economic repercussions for the lobster fisheries and industry.
Collapse
Affiliation(s)
- Kayla Menu-Courey
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| | - Fanny Noisette
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada; Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Sarah Piedalue
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| | - Dounia Daoud
- Homarus Inc, 408 Rue Main, Shediac, NB, E4P 2G1, Canada; EcoNov Inc, 540 Ch. Gorge Road, Moncton, NB, E1G 3H8, Canada
| | - Tammy Blair
- Fisheries and Oceans Canada, Saint Andrews Biological Station, 125 Marine Science Dr, Saint Andrews, NB, E5B 0E4, Canada; Fisheries and Oceans Canada, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS, B2Y 4A2, Canada
| | - Pierre U Blier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| | - Kumiko Azetsu-Scott
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS, B2Y 4A2, Canada
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| |
Collapse
|
43
|
González-Delgado S, Hernández JC. The Importance of Natural Acidified Systems in the Study of Ocean Acidification: What Have We Learned? ADVANCES IN MARINE BIOLOGY 2018; 80:57-99. [PMID: 30368306 DOI: 10.1016/bs.amb.2018.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human activity is generating an excess of atmospheric CO2, resulting in what we know as ocean acidification, which produces changes in marine ecosystems. Until recently, most of the research in this area had been done under small-scale, laboratory conditions, using few variables, few species and few life cycle stages. These limitations raise questions about the reproducibility of the environment and about the importance of indirect effects and synergies in the final results of these experiments. One way to address these experimental problems is by conducting studies in situ, in natural areas where expected future pH conditions already occur, such as CO2 vent systems. In the present work, we compile and discuss the latest research carried out in these natural laboratories, with the objective to summarize their advantages and disadvantages for research to improve these investigations so they can better help us understand how the oceans of the future will change.
Collapse
Affiliation(s)
- Sara González-Delgado
- Marine Community Ecology and Climate Change, Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - José Carlos Hernández
- Marine Community Ecology and Climate Change, Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
44
|
Barner AK, Chan F, Hettinger A, Hacker SD, Marshall K, Menge BA. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. GLOBAL CHANGE BIOLOGY 2018; 24:4464-4477. [PMID: 30047188 DOI: 10.1111/gcb.14372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Decades of research have demonstrated that many calcifying species are negatively affected by ocean acidification, a major anthropogenic threat in marine ecosystems. However, even closely related species may exhibit different responses to ocean acidification and less is known about the drivers that shape such variation in different species. Here, we examine the drivers of physiological performance under ocean acidification in a group of five species of turf-forming coralline algae. Specifically, quantitating the relative weight of evidence for each of ten hypotheses, we show that variation in coralline calcification and photosynthesis was best explained by allometric traits. Across ocean acidification conditions, larger individuals (measured as noncalcified mass) had higher net calcification and photosynthesis rates. Importantly, our approach was able to not only identify the aspect of size that drove the performance of coralline algae, but also determined that responses to ocean acidification were not dependent on species identity, evolutionary relatedness, habitat, shape, or structural composition. In fact, we found that failure to test multiple, alternative hypotheses would underestimate the generality of physiological performances, leading to the conclusion that each species had different baseline performance under ocean acidification. Testing among alternative hypotheses is an essential step toward determining the generalizability of experiments across taxa and identifying common drivers of species responses to global change.
Collapse
Affiliation(s)
- Allison K Barner
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Annaliese Hettinger
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
- Bodega Marine Laboratory, University of California Davis, Davis, California
| | - Sally D Hacker
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Kelsey Marshall
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
45
|
Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone. Sci Rep 2018; 8:11354. [PMID: 30054497 PMCID: PMC6063920 DOI: 10.1038/s41598-018-29251-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/09/2018] [Indexed: 11/15/2022] Open
Abstract
Rising atmospheric concentrations of carbon dioxide are causing surface seawater pH and carbonate ion concentrations to fall in a process known as ocean acidification. To assess the likely ecological effects of ocean acidification we compared intertidal and subtidal marine communities at increasing levels of pCO2 at recently discovered volcanic seeps off the Pacific coast of Japan (34° N). This study region is of particular interest for ocean acidification research as it has naturally low levels of surface seawater pCO2 (280–320 µatm) and is located at a transition zone between temperate and sub-tropical communities. We provide the first assessment of ocean acidification effects at a biogeographic boundary. Marine communities exposed to mean levels of pCO2 predicted by 2050 experienced periods of low aragonite saturation and high dissolved inorganic carbon. These two factors combined to cause marked community shifts and a major decline in biodiversity, including the loss of key habitat-forming species, with even more extreme community changes expected by 2100. Our results provide empirical evidence that near-future levels of pCO2 shift sub-tropical ecosystems from carbonate to fleshy algal dominated systems, accompanied by biodiversity loss and major simplification of the ecosystem.
Collapse
|
46
|
Del Pasqua M, Schulze A, Tovar-Hernández MA, Keppel E, Lezzi M, Gambi MC, Giangrande A. Clarifying the taxonomic status of the alien species Branchiomma bairdi and Branchiomma boholense (Annelida: Sabellidae) using molecular and morphological evidence. PLoS One 2018; 13:e0197104. [PMID: 29746553 PMCID: PMC5945006 DOI: 10.1371/journal.pone.0197104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
This study was performed to analyse the genetic and morphological diversity of the sabellid annelid genus Branchiomma, with special emphasis on a taxon so far identified as Branchiomma bairdi. This species, originally described from Bermuda, has frequently been reported as an invader in the Mediterranean, the Atlantic and the Eastern Pacific, but recent observations have raised some taxonomic questions. Samples of this taxon were collected from five sites in the Mediterranean Sea, two sites in the original distribution area of B. bairdi in the Gulf of Mexico and four localities in the east Pacific and Atlantic Oceans where B. bairdi has been reported as invasive. The molecular results revealed a conspicuous genetic divergence (18.5% K2P) between the sampled Mediterranean populations and all the other ones that led to a re-evaluation of their morphological characters. The latter showed that the Mediterranean and extra-Mediterranean populations also differ in some discrete morphological and reproductive features. Consequently, the Mediterranean samples were re-designated as B. boholense, another non-indigenous species originally described from Philippines. Branchiomma bairdi and B. boholense differ in body size, development and shape of micro and macrostylodes, size of radiolar eyes and body pigmentation. Genetic diversity was high in B. boholense from the Mediterranean as well as in B. bairdi from the Gulf of Mexico, but low in B. bairdi populations outside their native range. The phylogenetic analysis revealed the presence of connections between the Mediterranean localities as well as between native and introduced B. bairdi populations that focus the attention on the Panama Canal as important passage for the introduction of the species from the Gulf of Mexico to the north-east Pacific Ocean.
Collapse
Affiliation(s)
- Michela Del Pasqua
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, Lecce, Italy
- * E-mail:
| | - Anja Schulze
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - María Ana Tovar-Hernández
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Biosistemática, San Nicolás de los Garza, Nuevo León, México
| | - Erica Keppel
- Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Marco Lezzi
- ARPAT, Environmental Protection Agency of Tuscany, A.V. Costa - Laboratory Sector - U.O. Biologia, Pisa, Italy
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn di Napoli, Department of Integrative Marine Ecology, Villa Dohrn- Benthic Ecology Center, Punta S. Pietro, Ischia (Napoli), Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, Lecce, Italy
- Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale, Naples, Italy
| |
Collapse
|
47
|
Thor P, Vermandele F, Carignan MH, Jacque S, Calosi P. No maternal or direct effects of ocean acidification on egg hatching in the Arctic copepod Calanus glacialis. PLoS One 2018; 13:e0192496. [PMID: 29415083 PMCID: PMC5802940 DOI: 10.1371/journal.pone.0192496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/24/2018] [Indexed: 11/21/2022] Open
Abstract
Widespread ocean acidification (OA) is transforming the chemistry of the global ocean and the Arctic is recognised as the region where this transformation will occur at the fastest rate. Moreover, many Arctic species are considered less capable of tolerating OA due to their lower capacity for acid-base regulation. This inability may put severe restraints on many fundamental functions, such as growth and reproductive investments, which ultimately may result in reduced fitness. However, maternal effects may alleviate severe effects on the offspring rendering them more tolerant to OA. In a highly replicated experiment we studied maternal and direct effects of OA predicted for the Arctic shelf seas on egg hatching time and success in the keystone copepod species Calanus glacialis. We incubated females at present day conditions (pHT 8.0) and year 2100 extreme conditions (pHT 7.5) during oogenesis and subsequently reciprocally transplanted laid eggs between these two conditions. Statistical tests showed no effects of maternal or direct exposure to OA at this level. We hypothesise that C. glacialis may be physiologically adapted to egg production at low pH since oogenesis can also take place at conditions of potentially low haemolymph pH of the mother during hibernation in the deep.
Collapse
Affiliation(s)
- Peter Thor
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
- * E-mail:
| | - Fanny Vermandele
- Université du Québec à Rimouski, Département de Biologie Chimie et Géographie, Rimouski, Canada
| | - Marie-Helene Carignan
- Université du Québec à Rimouski, Département de Biologie Chimie et Géographie, Rimouski, Canada
| | - Sarah Jacque
- Université du Québec à Rimouski, Département de Biologie Chimie et Géographie, Rimouski, Canada
| | - Piero Calosi
- Université du Québec à Rimouski, Département de Biologie Chimie et Géographie, Rimouski, Canada
| |
Collapse
|
48
|
Pansch C, Hattich GSI, Heinrichs ME, Pansch A, Zagrodzka Z, Havenhand JN. Long-term exposure to acidification disrupts reproduction in a marine invertebrate. PLoS One 2018; 13:e0192036. [PMID: 29408893 PMCID: PMC5800648 DOI: 10.1371/journal.pone.0192036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 (≈ 400 and 1600 μatm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH’s developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean.
Collapse
Affiliation(s)
- Christian Pansch
- Department of Marine Sciences – Tjärnö, University of Gothenburg, Tjärnö, Strömstad, Sweden
- * E-mail:
| | - Giannina S. I. Hattich
- Department of Marine Sciences – Tjärnö, University of Gothenburg, Tjärnö, Strömstad, Sweden
| | - Mara E. Heinrichs
- Department of Marine Sciences – Tjärnö, University of Gothenburg, Tjärnö, Strömstad, Sweden
| | - Andreas Pansch
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Wattenmeerstation Sylt, List, Germany
| | - Zuzanna Zagrodzka
- Department of Marine Sciences – Tjärnö, University of Gothenburg, Tjärnö, Strömstad, Sweden
| | - Jonathan N. Havenhand
- Department of Marine Sciences – Tjärnö, University of Gothenburg, Tjärnö, Strömstad, Sweden
| |
Collapse
|
49
|
Lamare MD, Liddy M, Uthicke S. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Proc Biol Sci 2017; 283:rspb.2016.1506. [PMID: 27903867 DOI: 10.1098/rspb.2016.1506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023] Open
Abstract
Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO2 and ambient pCO2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH(T) = 7.89-7.92), larvae developing in elevated pCO2 vent conditions (pH(T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response.
Collapse
Affiliation(s)
- Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Michelle Liddy
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand.,Australia Institute of Marine Sciences, Townsville, 4810, Queensland, Australia
| | - Sven Uthicke
- Australia Institute of Marine Sciences, Townsville, 4810, Queensland, Australia
| |
Collapse
|
50
|
Allen R, Foggo A, Fabricius K, Balistreri A, Hall-Spencer JM. Tropical CO 2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. MARINE POLLUTION BULLETIN 2017; 124:607-613. [PMID: 28040252 DOI: 10.1016/j.marpolbul.2016.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/30/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO2' (median pH7.77, 7.79), and 'extreme CO2' (median pH7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification.
Collapse
Affiliation(s)
- Ro Allen
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Andrew Foggo
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Katharina Fabricius
- Australian Institute of Marine Science, PMB 3, Townsville, Qld 4810, Australia
| | - Annalisa Balistreri
- Dipartimento di Scienze della Terra e del Mare, CoNiSMa, Università di Palermo, Via Archirafi 28, 90123 Palermo, Italy
| | - Jason M Hall-Spencer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK; Shimoda Marine Research Centre, Tsukuba University, Shimoda City, Shizuoka 415-0025, Japan.
| |
Collapse
|