1
|
Jalandra R, Dalal N, Mohan A, Solanki PR, Kumar A. A novel method for enrichment of Morganella morganii in fecal samples using designed culture medium. Cell Biochem Funct 2024; 42:e4004. [PMID: 38583079 DOI: 10.1002/cbf.4004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Morganella morganii is a gram negative, facultative anaerobic rod-shaped bacterium, commonly found in environment and in the intestine of human, mammals, and reptiles as a part of their gut microbiome. M. morganii can cause Gram-negative folliculitis, black nail infection, acute retiform purpura, fetal demise, and subdural empyema. The increasing frequency of M. morganii infections generate the need for efficient methods to enrich the presence of M. morganii in clinical samples to make its detection easier. Culturomics aims to grow and maximize the number of culturable bacteria. Different methods are followed to maximize the growth of minority population of bacteria by disrupting the growth of bacteria which are present in higher concentration. This article presents a method for selective enriching the M. morganii in human fecal samples. This method includes prior incubation of fecal microbiota in an anaerobic environment, adding supplement like fecal water to give dormant bacteria a break to become active to grow to threshold concentration, and an enrichment stage which provides the additional opportunity of growing to M. morganii on the selective medium. This method also provides an ingenuous way for augmenting the growth of fecal M. morganii species.
Collapse
Affiliation(s)
- Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azraeli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
2
|
Gao P, Yan X, Xia X, Liu D, Guo S, Ma R, Lou Y, Yang Z, Wang H, Yang Q, Pan H, Zhuge Y. Effects of the three amendments on NH 3 volatilization, N 2O emissions, and nitrification at four salinity levels: An indoor experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120399. [PMID: 38387357 DOI: 10.1016/j.jenvman.2024.120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
The marked salinity and alkaline pH of coastal saline soil profoundly impact the nitrogen conversion process, leading to a significantly reduced nitrogen utilization efficiency and substantial gaseous nitrogen loss. The application of soil amendments (e.g. biochar, manure, and gypsum) was proved to be effective for the remediation of saline soils. However, the effects of the three amendments on soil nitrogen transformation in soils with various salinity levels, especially on NH3 volatilization and N2O emission, remain elusive. Here, we reported the effects of biochar, manure, and gypsum on NH3 volatilization and N2O emission under four natural salinity gradients in the Yellow River Delta. Also, high-throughput sequencing and qPCR analysis were performed to characterize the response of nitrification (amoA) and denitrification (nirS, nirK, and nosZ) functional genes to the three amendments. The results showed that the three amendments had little effect on NH3 volatilization in low- and moderate-salinity soils, while biochar stimulated NH3 volatilization in high-salinity soils and reduced NH3 volatilization in severe-salinity soils. Spearman correlation analysis demonstrated that AOA was significantly and positively correlated with the NO3--N content (r = 0.137, P < 0.05) and N2O emissions (r = 0.174, P < 0.01), which indicated that AOA dominated N2O emissions from nitrification in saline soils. Structural equation modeling indicated that biochar, manure, and gypsum affected N2O emission by influencing soil pH, conductivity, mineral nitrogen content, and functional genes (AOA-amoA and nosZ). Two-way ANOVA further showed that salinity and amendments (biochar, manure, and gypsum) had significant effects on N2O emissions. In summary, this study provides valuable insights to better understand the effects of gaseous N changes in saline soils, thereby improving the accuracy and validity of future GHG emission predictions and modeling.
Collapse
Affiliation(s)
- Panpan Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Xianghui Yan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Xuejing Xia
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Dan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Songnian Guo
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Ronghui Ma
- Agricultural Technology Promotion Center of Shandong Province, Jinan, 252199, China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Zhongchen Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
3
|
Quantifying and Cataloguing Unknown Sequences within Human Microbiomes. mSystems 2022; 7:e0146821. [PMID: 35258340 PMCID: PMC9052204 DOI: 10.1128/msystems.01468-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Advances in genome sequencing technologies and lower costs have enabled the exploration of a multitude of known and novel environments and microbiomes. This has led to an exponential growth in the raw sequence data that are deposited in online repositories. Metagenomic and metatranscriptomic data sets are typically analysed with regard to a specific biological question. However, it is widely acknowledged that these data sets are comprised of a proportion of sequences that bear no similarity to any currently known biological sequence, and this so-called "dark matter" is often excluded from downstream analyses. In this study, a systematic framework was developed to assemble, identify, and measure the proportion of unknown sequences present in distinct human microbiomes. This framework was applied to 40 distinct studies, comprising 963 samples, and covering 10 different human microbiomes including fecal, oral, lung, skin, and circulatory system microbiomes. We found that while the human microbiome is one of the most extensively studied, on average 2% of assembled sequences have not yet been taxonomically defined. However, this proportion varied extensively among different microbiomes and was as high as 25% for skin and oral microbiomes that have more interactions with the environment. A rate of taxonomic characterization of 1.64% of unknown sequences being characterized per month was calculated from these taxonomically unknown sequences discovered in this study. A cross-study comparison led to the identification of similar unknown sequences in different samples and/or microbiomes. Both our computational framework and the novel unknown sequences produced are publicly available for future cross-referencing. Our approach led to the discovery of several novel viral genomes that bear no similarity to sequences in the public databases. Some of these are widespread as they have been found in different microbiomes and studies. Hence, our study illustrates how the systematic characterization of unknown sequences can help the discovery of novel microbes, and we call on the research community to systematically collate and share the unknown sequences from metagenomic studies to increase the rate at which the unknown sequence space can be classified.
Collapse
|
4
|
Mueller RC, Peach JT, Skorupa DJ, Copié V, Bothner B, Peyton BM. An emerging view of the diversity, ecology and function of Archaea in alkaline hydrothermal environments. FEMS Microbiol Ecol 2021; 97:6021323. [PMID: 33501490 DOI: 10.1093/femsec/fiaa246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
The described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems. In this review, we examine what is currently known about the archaea found in thermoalkaline environments, focusing on the detection of novel lineages and knowledge of the ecology, metabolic pathways and functions of these populations and communities. We also discuss the potential of emerging multi-omics approaches, including proteomics and metabolomics, to enhance our understanding of archaea within extreme thermoalkaline systems.
Collapse
Affiliation(s)
- Rebecca C Mueller
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA
| | - Dana J Skorupa
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Valerie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| |
Collapse
|
5
|
Hayoun K, Pible O, Petit P, Allain F, Jouffret V, Culotta K, Rivasseau C, Armengaud J, Alpha-Bazin B. Proteotyping Environmental Microorganisms by Phylopeptidomics: Case Study Screening Water from a Radioactive Material Storage Pool. Microorganisms 2020; 8:E1525. [PMID: 33020444 PMCID: PMC7599590 DOI: 10.3390/microorganisms8101525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The microbial diversity encompassed by the environmental biosphere is largely unexplored, although it represents an extensive source of new knowledge and potentially of novel enzymatic catalysts for biotechnological applications. To determine the taxonomy of microorganisms, proteotyping by tandem mass spectrometry has proved its efficiency. Its latest extension, phylopeptidomics, adds a biomass quantitation perspective for mixtures of microorganisms. Here, we present an application of phylopeptidomics to rapidly and sensitively screen microorganisms sampled from an industrial environment, i.e., a pool where radioactive material is stored. The power of this methodology is demonstrated through the identification of both prokaryotes and eukaryotes, whether as pure isolates or present as mixtures or consortia. In this study, we established accurate taxonomical identification of environmental prokaryotes belonging to the Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria phyla, as well as eukaryotes from the Ascomycota phylum. The results presented illustrate the potential of tandem mass spectrometry proteotyping, in particular phylopeptidomics, to screen for and rapidly identify microorganisms.
Collapse
Affiliation(s)
- Karim Hayoun
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris Saclay, F-30200 Bagnols-sur-Cèze, France; (K.H.); (O.P.); (F.A.); (V.J.); (K.C.); (B.A.-B.)
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, F-30207 Bagnols-sur-Cèze, France
| | - Olivier Pible
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris Saclay, F-30200 Bagnols-sur-Cèze, France; (K.H.); (O.P.); (F.A.); (V.J.); (K.C.); (B.A.-B.)
| | - Pauline Petit
- CEA, CNRS, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, UMR5168, F-38000 Grenoble, France;
| | - François Allain
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris Saclay, F-30200 Bagnols-sur-Cèze, France; (K.H.); (O.P.); (F.A.); (V.J.); (K.C.); (B.A.-B.)
| | - Virginie Jouffret
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris Saclay, F-30200 Bagnols-sur-Cèze, France; (K.H.); (O.P.); (F.A.); (V.J.); (K.C.); (B.A.-B.)
| | - Karen Culotta
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris Saclay, F-30200 Bagnols-sur-Cèze, France; (K.H.); (O.P.); (F.A.); (V.J.); (K.C.); (B.A.-B.)
| | - Corinne Rivasseau
- CEA-Saclay, DRF/Joliot/SB2SM/BBC, I2BC, 91191 Gif-sur-Yvette, France;
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris Saclay, F-30200 Bagnols-sur-Cèze, France; (K.H.); (O.P.); (F.A.); (V.J.); (K.C.); (B.A.-B.)
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris Saclay, F-30200 Bagnols-sur-Cèze, France; (K.H.); (O.P.); (F.A.); (V.J.); (K.C.); (B.A.-B.)
| |
Collapse
|
6
|
Wong HL, MacLeod FI, White RA, Visscher PT, Burns BP. Microbial dark matter filling the niche in hypersaline microbial mats. MICROBIOME 2020; 8:135. [PMID: 32938503 PMCID: PMC7495880 DOI: 10.1186/s40168-020-00910-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Shark Bay, Australia, harbours one of the most extensive and diverse systems of living microbial mats that are proposed to be analogs of some of the earliest ecosystems on Earth. These ecosystems have been shown to possess a substantial abundance of uncultivable microorganisms. These enigmatic microbes, jointly coined as 'microbial dark matter' (MDM), are hypothesised to play key roles in modern microbial mats. RESULTS We reconstructed 115 metagenome-assembled genomes (MAGs) affiliated to MDM, spanning 42 phyla. This study reports for the first time novel microorganisms (Zixibacterial order GN15) putatively taking part in dissimilatory sulfate reduction in surface hypersaline settings, as well as novel eukaryote signature proteins in the Asgard archaea. Despite possessing reduced-size genomes, the MDM MAGs are capable of fermenting and degrading organic carbon, suggesting a role in recycling organic carbon. Several forms of RuBisCo were identified, allowing putative CO2 incorporation into nucleotide salvaging pathways, which may act as an alternative carbon and phosphorus source. High capacity of hydrogen production was found among Shark Bay MDM. Putative schizorhodopsins were also identified in Parcubacteria, Asgard archaea, DPANN archaea, and Bathyarchaeota, allowing these members to potentially capture light energy. Diversity-generating retroelements were prominent in DPANN archaea that likely facilitate the adaptation to a dynamic, host-dependent lifestyle. CONCLUSIONS This is the first study to reconstruct and describe in detail metagenome-assembled genomes (MAGs) affiliated with microbial dark matter in hypersaline microbial mats. Our data suggests that these microbial groups are major players in these systems. In light of our findings, we propose H2, ribose and CO/CO2 as the main energy currencies of the MDM community in these mat systems. Video Abstract.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Richard Allen White
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
- RAW Molecular Systems LLC, Spokane, WA, USA
- Department of Bioinformatics and Genomics, The University of North Carolina, Charlotte, NC, USA
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
- Department of Marine Sciences, University of Connecticut, Mansfield, USA
- Biogeosciences, the Université de Bourgogne Franche-Comté, Dijon, France
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Abstract
Either stereo reactants or stereo catalysis from achiral or chiral molecules are a prerequisite to obtain pure enantiomeric lipid derivatives. We reviewed a few plausibly organic syntheses of phospholipids under prebiotic conditions with special attention paid to the starting materials as pro-chiral dihydroxyacetone and dihydroxyacetone phosphate (DHAP), which are the key molecules to break symmetry in phospholipids. The advantages of homochiral membranes compared to those of heterochiral membranes were analysed in terms of specific recognition, optimal functions of enzymes, membrane fluidity and topological packing. All biological membranes contain enantiomerically pure lipids in modern bacteria, eukarya and archaea. The contemporary archaea, comprising of methanogens, halobacteria and thermoacidophiles, are living under extreme conditions reminiscent of primitive environment and may indicate the origin of one ancient evolution path of lipid biosynthesis. The analysis of the known lipid metabolism reveals that all modern cells including archaea synthetize enantiomerically pure lipid precursors from prochiral DHAP. Sn-glycerol-1-phosphate dehydrogenase (G1PDH), usually found in archaea, catalyses the formation of sn-glycerol-1-phosphate (G1P), while sn-glycerol-3-phosphate dehydrogenase (G3PDH) catalyses the formation of sn-glycerol-3-phosphate (G3P) in bacteria and eukarya. The selective enzymatic activity seems to be the main strategy that evolution retained to obtain enantiomerically pure lipids. The occurrence of two genes encoding for G1PDH and G3PDH served to build up an evolutionary tree being the basis of our hypothesis article focusing on the evolution of these two genes. Gene encoding for G3PDH in eukarya may originate from G3PDH gene found in rare archaea indicating that archaea appeared earlier in the evolutionary tree than eukarya. Archaea and bacteria evolved probably separately, due to their distinct respective genes coding for G1PDH and G3PDH. We propose that prochiral DHAP is an essential molecule since it provides a convergent link between G1DPH and G3PDH. The synthesis of enantiopure phospholipids from DHAP appeared probably firstly in the presence of chemical catalysts, before being catalysed by enzymes which were the products of later Darwinian selection. The enzymes were probably selected for their efficient catalytic activities during evolution from large libraries of vesicles containing amino acids, carbohydrates, nucleic acids, lipids, and meteorite components that induced symmetry imbalance.
Collapse
|
8
|
Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei. Sci Rep 2020; 10:1303. [PMID: 31992756 PMCID: PMC6987183 DOI: 10.1038/s41598-020-58025-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
The advent of novel sequencing techniques has unraveled a tremendous diversity on Earth. Genomic data allow us to understand ecology and function of organisms that we would not otherwise know existed. However, major methodological challenges remain, in particular for multicellular organisms with large genomes. Arbuscular mycorrhizal (AM) fungi are important plant symbionts with cryptic and complex multicellular life cycles, thus representing a suitable model system for method development. Here, we report a novel method for large scale, unbiased nuclear sorting, sequencing, and de novo assembling of AM fungal genomes. After comparative analyses of three assembly workflows we discuss how sequence data from single nuclei can best be used for different downstream analyses such as phylogenomics and comparative genomics of single nuclei. Based on analysis of completeness, we conclude that comprehensive de novo genome assemblies can be produced from six to seven nuclei. The method is highly applicable for a broad range of taxa, and will greatly improve our ability to study multicellular eukaryotes with complex life cycles.
Collapse
|
9
|
Carabeo-Pérez A, Guerra-Rivera G, Ramos-Leal M, Jiménez-Hernández J. Metagenomic approaches: effective tools for monitoring the structure and functionality of microbiomes in anaerobic digestion systems. Appl Microbiol Biotechnol 2019; 103:9379-9390. [PMID: 31420693 DOI: 10.1007/s00253-019-10052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Microbial metagenome analysis has proven its usefulness to investigate the microbiomes present in technical engineered ecosystems such as anaerobic digestion systems. The analysis of the total microbial genomic DNA allows the detailed determination of both the microbial community structure and its functionality. In addition, it enables to study the response of the microbiome to alterations in technical process parameters. Strategies of functional microbial networks to face abiotic stressors, e.g., resistance, resilience, and reorganization, can be evaluated with respect to overall process optimization. The objective of this paper is to review the main metagenomic tools used for effective studies on anaerobic digestion systems in monitoring the dynamic of the microbiomes, as well as the factors that have been identified so far as limiting the metagenomic studies in this ecosystems.
Collapse
Affiliation(s)
- Annerys Carabeo-Pérez
- Centro de Estudios de Energía y Procesos Industriales, Universidad de Sancti Spíritus "José Martí Pérez", Ave de los Mártires No. 360, CP 60100, Sancti Spíritus, Cuba
| | - Gilda Guerra-Rivera
- Facultad de Biología, Universidad de La Habana, Calle 25 e/ I y J, Vedado, CP 10400, Havana, Cuba
| | - Miguel Ramos-Leal
- Instituto de investigaciones de fruticultura tropical, Ave. 7ma No. 3005, et. 30 y 32, Playa, CP 11300, Havana, Cuba
| | - Janet Jiménez-Hernández
- Centro de Estudios de Energía y Procesos Industriales, Universidad de Sancti Spíritus "José Martí Pérez", Ave de los Mártires No. 360, CP 60100, Sancti Spíritus, Cuba.
| |
Collapse
|
10
|
Castillo YM, Mangot J, Benites LF, Logares R, Kuronishi M, Ogata H, Jaillon O, Massana R, Sebastián M, Vaqué D. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol Ecol 2019; 28:4272-4289. [DOI: 10.1111/mec.15210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yaiza M. Castillo
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Jean‐François Mangot
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Luiz Felipe Benites
- Integrative Biology of Marine Organisms (BIOM) CNRS Oceanological Observatory of Banyuls Sorbonne University Banyuls‐sur‐Mer France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Megumi Kuronishi
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Hiroyuki Ogata
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Olivier Jaillon
- Génomique Métabolique Genoscope Institut de biologie François Jacob CEA CNRS Université d'Evry Université Paris‐Saclay Evry France
| | - Ramon Massana
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
- Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canaria Telde Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| |
Collapse
|
11
|
Abstract
Metagenomics allows exploration of aspects of a microbial community that were inaccessible by cultivation-based approaches targeting single microbes. Many new microbial taxa and genes have been discovered using metagenomics, but different kinds of "unknowns" still remain in a microbiome experiment. We discuss here whether and how it is possible to deal with them.
Collapse
|
12
|
Identification of new members of alkaliphilic lipases in archaea and metagenome database using reconstruction of ancestral sequences. 3 Biotech 2019; 9:165. [PMID: 30997302 DOI: 10.1007/s13205-019-1693-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/27/2019] [Indexed: 10/27/2022] Open
Abstract
The application of bioinformatics in lipase research has the potential to discover robust members from different genomic/metagenomic databses. In this study, we explored the diversity and distribution of alkaliphilic lipases in archaea domain and metagenome data sets through phylogenetic survey. Reconstructed ancestral sequence of alkaphilic lipase was used to search the homologous alkaliphilic lipases among the archaea and metagenome public databases. Our investigation revealed a total 21 unique sequences of new alkaliphilic lipases in the archaeal and environmental metagenomic protein databases that shared significant sequence similarity to the bacterial alkaliphilic lipases. Most of the identified new members of alkaliphilic lipases belong to class Haloarchaea. The searched list of homologs also comprised of one characterized lipase from alkalohyperthermophilic Archaeoglobus fulgidus. All the newly identified alkaliphilic lipase members showed conserved pentapeptide [X-His-Ser-X-Gly] motif, a key feature of lipase family. Furthermore, detailed analysis of all these new sequences showed homology either with thermostable or alkalophilic lipases. The reconstructed ancestral sequence-based searches increased the sensitivity and efficacies to detect remotely homologous sequences. We hypothesize that this study can enrich our current knowledge on lipases in designing more potential thermo-alkaliphilic lipases for industrial applications.
Collapse
|
13
|
Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett 2019; 366:5281434. [PMID: 30629179 PMCID: PMC6349945 DOI: 10.1093/femsle/fnz008] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Archaea-a primary domain of life besides Bacteria-have for a long time been regarded as peculiar organisms that play marginal roles in biogeochemical cycles. However, this picture changed with the discovery of a large diversity of archaea in non-extreme environments enabled by the use of cultivation-independent methods. These approaches have allowed the reconstruction of genomes of uncultivated microorganisms and revealed that archaea are diverse and broadly distributed in the biosphere and seemingly include a large diversity of putative symbiotic organisms, most of which belong to the tentative archaeal superphylum referred to as DPANN. This archaeal group encompasses at least 10 different lineages and includes organisms with extremely small cell and genome sizes and limited metabolic capabilities. Therefore, many members of DPANN may be obligately dependent on symbiotic interactions with other organisms and may even include novel parasites. In this contribution, we review the current knowledge of the gene repertoires and lifestyles of members of this group and discuss their placement in the tree of life, which is the basis for our understanding of the deep microbial roots and the role of symbiosis in the evolution of life on Earth.
Collapse
Affiliation(s)
- Nina Dombrowski
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jun-Hoe Lee
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, P.O. Box 596, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, Bristol BS8 1TQ, UK
| | - Pierre Offre
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
| | - Anja Spang
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, P.O. Box 596, Husargatan 3, SE-75123 Uppsala, Sweden
| |
Collapse
|
14
|
Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery. Genome Biol Evol 2018; 10:707-715. [PMID: 29420719 PMCID: PMC5830969 DOI: 10.1093/gbe/evy031] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 02/07/2023] Open
Abstract
Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms on Earth. However, they have been discovered only 334 years ago, and their diversity started to become seriously investigated even later. For these reasons, microbial studies that unveil novel microbial lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned sequences in environmental genomics data sets, and that of uncultured microbes on the planet, we propose that unraveling the microbial dark matter should be identified as a central priority for biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery with the potential to further highlight the microbial unknowns.
Collapse
Affiliation(s)
- Guillaume Bernard
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Jananan S Pathmanathan
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Romain Lannes
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Philippe Lopez
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Eric Bapteste
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| |
Collapse
|
15
|
Kalesinskas L, Cudone E, Fofanov Y, Putonti C. S-plot2: Rapid Visual and Statistical Analysis of Genomic Sequences. Evol Bioinform Online 2018; 14:1176934318797354. [PMID: 30245567 PMCID: PMC6144591 DOI: 10.1177/1176934318797354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
With the daily release of data from whole genome sequencing projects, tools to facilitate comparative studies are hard-pressed to keep pace. Graphical software solutions can readily recognize synteny by measuring similarities between sequences. Nevertheless, regions of dissimilarity can prove to be equally informative; these regions may harbor genes acquired via lateral gene transfer (LGT), signify gene loss or gain, or include coding regions under strong selection. Previously, we developed the software S-plot. This tool employed an alignment-free approach for comparing bacterial genomes and generated a heatmap representing the genomes’ similarities and dissimilarities in nucleotide usage. In prior studies, this tool proved valuable in identifying genome rearrangements as well as exogenous sequences acquired via LGT in several bacterial species. Herein, we present the next generation of this tool, S-plot2. Similar to its predecessor, S-plot2 creates an interactive, 2-dimensional heatmap capturing the similarities and dissimilarities in nucleotide usage between genomic sequences (partial or complete). This new version, however, includes additional metrics for analysis, new reporting options, and integrated BLAST query functionality for the user to interrogate regions of interest. Furthermore, S-plot2 can evaluate larger sequences, including whole eukaryotic chromosomes. To illustrate some of the applications of the tool, 2 case studies are presented. The first examines strain-specific variation across the Pseudomonas aeruginosa genome and strain-specific LGT events. In the second case study, corresponding human, chimpanzee, and rhesus macaque autosomes were studied and lineage specific contributions to divergence were estimated. S-plot2 provides a means to both visually and quantitatively compare nucleotide sequences, from microbial genomes to eukaryotic chromosomes. The case studies presented illustrate just 2 potential applications of the tool, highlighting its capability to identify and investigate the variation in molecular divergence rates across sequences. S-plot2 is freely available through https://bitbucket.org/lkalesinskas/splot and is supported on the Linux and MS Windows operating systems.
Collapse
Affiliation(s)
- Laurynas Kalesinskas
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Evan Cudone
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME JOURNAL 2018; 12:2655-2667. [PMID: 29991760 DOI: 10.1038/s41396-018-0207-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Endosymbiosis is a widespread phenomenon in the microbial world and can be based on diverse interactions between endosymbiont and host cell. The vast majority of the known endosymbiotic interactions involve bacteria that have invaded eukaryotic host cells. However, methanogenic archaea have been found to thrive in anaerobic, hydrogenosome-containing protists and it was suggested that this symbiosis is based on the transfer of hydrogen. Here, we used culture-independent genomics approaches to sequence the genomes of two distantly related methanogenic endosymbionts that have been acquired in two independent events by closely related anaerobic ciliate hosts Nyctotherus ovalis and Metopus contortus, respectively. The sequences obtained were then validated as originating from the ciliate endosymbionts by in situ probing experiments. Comparative analyses of these genomes and their closest free-living counterparts reveal that the genomes of both endosymbionts are in an early stage of adaptation towards endosymbiosis as evidenced by the large number of genes undergoing pseudogenization. For instance, the observed loss of genes involved in amino acid biosynthesis in both endosymbiont genomes indicates that the endosymbionts rely on their hosts for obtaining several essential nutrients. Furthermore, the endosymbionts appear to have gained significant amounts of genes of potentially secreted proteins, providing targets for future studies aiming to elucidate possible mechanisms underpinning host-interactions. Altogether, our results provide the first genomic insights into prokaryotic endosymbioses from the archaeal domain of life.
Collapse
|
17
|
Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, Kirkegaard RH, de la Torre JR, Daims H, Wagner M. Cultivation and Genomic Analysis of " Candidatus Nitrosocaldus islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland. Front Microbiol 2018; 9:193. [PMID: 29491853 PMCID: PMC5817080 DOI: 10.3389/fmicb.2018.00193] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as "Candidatus Nitrosocaldus islandicus," is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. "Ca. N. islandicus" encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as "Ca. N. islandicus" is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that "Ca. N. islandicus" has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes - one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.
Collapse
Affiliation(s)
- Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Craig W. Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Julia Vierheilig
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Christopher J. Sedlacek
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Rasmus H. Kirkegaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - José R. de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat Rev Microbiol 2017; 15:711-723. [DOI: 10.1038/nrmicro.2017.133] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Genotyping ofBartonellabacteria and their animal hosts: current status and perspectives. Parasitology 2017; 145:543-562. [DOI: 10.1017/s0031182017001263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARYGrowing evidence demonstrates that bacterial species diversity is substantial, and many of these species are pathogenic in some contexts or hosts. At the same time, laboratories and museums have collected valuable animal tissue and ectoparasite samples that may contain substantial novel information on bacterial prevalence and diversity. However, the identification of bacterial species is challenging, partly due to the difficulty in culturing many microbes and the reliance on molecular data. Although the genomics revolution will surely add to our knowledge of bacterial systematics, these approaches are not accessible to all researchers and rely predominantly on cultured isolates. Thus, there is a need for comprehensive molecular analyses capable of accurately genotyping bacteria from animal tissues or ectoparasites using common methods that will facilitate large-scale comparisons of species diversity and prevalence. To illustrate the challenges of genotyping bacteria, we focus on the genusBartonella, vector-borne bacteria common in mammals. We highlight the value and limitations of commonly used techniques for genotyping bartonellae and make recommendations for researchers interested in studying the diversity of these bacteria in various samples. Our recommendations could be applicable to many bacterial taxa (with some modifications) and could lead to a more complete understanding of bacterial species diversity.
Collapse
|
21
|
Rout MP, Field MC. The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annu Rev Biochem 2017; 86:637-657. [DOI: 10.1146/annurev-biochem-061516-044643] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mark C. Field
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
22
|
Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, Ettema TJG, Embley TM. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci U S A 2017; 114:E4602-E4611. [PMID: 28533395 PMCID: PMC5468678 DOI: 10.1073/pnas.1618463114] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood-Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.
Collapse
Affiliation(s)
- Tom A Williams
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom;
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Gergely J Szöllősi
- MTA-ELTE Lendület Evolutionary Genomics Research Group, 1117 Budapest, Hungary
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Sarah E Heaps
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Bastien Boussau
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
23
|
Mukai T, Crnković A, Umehara T, Ivanova NN, Kyrpides NC, Söll D. RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea. mBio 2017; 8:e00561-17. [PMID: 28487430 PMCID: PMC5424206 DOI: 10.1128/mbio.00561-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
The diversity of the genetic code systems used by microbes on earth is yet to be elucidated. It is known that certain methanogenic archaea employ an alternative system for cysteine (Cys) biosynthesis and encoding; tRNACys is first acylated with phosphoserine (Sep) by O-phosphoseryl-tRNA synthetase (SepRS) and then converted to Cys-tRNACys by Sep-tRNA:Cys-tRNA synthase (SepCysS). In this study, we searched all genomic and metagenomic protein sequence data in the Integrated Microbial Genomes (IMG) system and at the NCBI to reveal new clades of SepRS and SepCysS proteins belonging to diverse archaea in the four major groups (DPANN, Euryarchaeota, TACK, and Asgard) and two groups of bacteria ("Candidatus Parcubacteria" and Chloroflexi). Bacterial SepRS and SepCysS charged bacterial tRNACys species with cysteine in vitro Homologs of SepCysE, a scaffold protein facilitating SepRS⋅SepCysS complex assembly in Euryarchaeota class I methanogens, are found in a few groups of TACK and Asgard archaea, whereas the C-terminally truncated homologs exist fused or genetically coupled with diverse SepCysS species. Investigation of the selenocysteine (Sec)- and pyrrolysine (Pyl)-utilizing traits in SepRS-utilizing archaea and bacteria revealed that the archaea carrying full-length SepCysE employ Sec and that SepRS is often found in Pyl-utilizing archaea and Chloroflexi bacteria. We discuss possible contributions of the SepRS-SepCysS system for sulfur assimilation, methanogenesis, and other metabolic processes requiring large amounts of iron-sulfur enzymes or Pyl-containing enzymes.IMPORTANCE Comprehensive analyses of all genomic and metagenomic protein sequence data in public databases revealed the distribution and evolution of an alternative cysteine-encoding system in diverse archaea and bacteria. The finding that the SepRS-SepCysS-SepCysE- and the selenocysteine-encoding systems are shared by the Euryarchaeota class I methanogens, the Crenarchaeota AK8/W8A-19 group, and an Asgard archaeon suggests that ancient archaea may have used both systems. In contrast, bacteria may have obtained the SepRS-SepCysS system from archaea. The SepRS-SepCysS system sometimes coexists with a pyrrolysine-encoding system in both archaea and bacteria. Our results provide additional bioinformatic evidence for the contribution of the SepRS-SepCysS system for sulfur assimilation and diverse metabolisms which require vast amounts of iron-sulfur enzymes and proteins. Among these biological activities, methanogenesis, methylamine metabolism, and organohalide respiration may have local and global effects on earth. Taken together, uncultured bacteria and archaea provide an expanded record of the evolution of the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Takuya Umehara
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, California, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, California, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Stagars MH, Mishra S, Treude T, Amann R, Knittel K. Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments. Front Microbiol 2017; 8:764. [PMID: 28503173 PMCID: PMC5409227 DOI: 10.3389/fmicb.2017.00764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/12/2017] [Indexed: 11/17/2022] Open
Abstract
Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT) system. Untreated (without simulated petroleum seepage) and SOFT sediment microbial communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic units (OTU0.945) but shared only 23% archaeal OTU0.945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkyl)succinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0.96.
Collapse
Affiliation(s)
- Marion H Stagars
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Sonakshi Mishra
- Department of Marine Biogeochemistry, GEOMAR - Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Tina Treude
- Department of Marine Biogeochemistry, GEOMAR - Helmholtz Centre for Ocean Research KielKiel, Germany.,Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los AngelesCA, USA.,Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los AngelesCA, USA
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| |
Collapse
|
25
|
Mangot JF, Logares R, Sánchez P, Latorre F, Seeleuthner Y, Mondy S, Sieracki ME, Jaillon O, Wincker P, Vargas CD, Massana R. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci Rep 2017; 7:41498. [PMID: 28128359 PMCID: PMC5269757 DOI: 10.1038/srep41498] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
Pico-sized eukaryotes play key roles in the functioning of marine ecosystems, but we still have a limited knowledge on their ecology and evolution. The MAST-4 lineage is of particular interest, since it is widespread in surface oceans, presents ecotypic differentiation and has defied culturing efforts so far. Single cell genomics (SCG) are promising tools to retrieve genomic information from these uncultured organisms. However, SCG are based on whole genome amplification, which normally introduces amplification biases that limit the amount of genomic data retrieved from a single cell. Here, we increase the recovery of genomic information from two MAST-4 lineages by co-assembling short reads from multiple Single Amplified Genomes (SAGs) belonging to evolutionary closely related cells. We found that complementary genomic information is retrieved from different SAGs, generating co-assembly that features >74% of genome recovery, against about 20% when assembled individually. Even though this approach is not aimed at generating high-quality draft genomes, it allows accessing to the genomic information of microbes that would otherwise remain unreachable. Since most of the picoeukaryotes still remain uncultured, our work serves as a proof-of-concept that can be applied to other taxa in order to extract genomic data and address new ecological and evolutionary questions.
Collapse
Affiliation(s)
- Jean-François Mangot
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Fran Latorre
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Yoann Seeleuthner
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Samuel Mondy
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Michael E. Sieracki
- National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA
| | - Olivier Jaillon
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Patrick Wincker
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Colomban de Vargas
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, F-29680, France
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, F-29680, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| |
Collapse
|
26
|
Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJG. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017; 541:353-358. [PMID: 28077874 DOI: 10.1038/nature21031] [Citation(s) in RCA: 654] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.
Collapse
Affiliation(s)
| | - Eva F Caceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Disa Bäckström
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lina Juzokaite
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Emmelien Vancaester
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kiley W Seitz
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Karthik Anantharaman
- Department of Earth and Planetary Sciences, and Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Piotr Starnawski
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Kasper U Kjeldsen
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Matthew B Stott
- GNS Science, Extremophile Research Group, Private Bag 2000, Taupō 3352, New Zealand
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, and Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Andreas Schramm
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brett J Baker
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
27
|
Abstract
Actin represents one of the most abundant and conserved eukaryotic proteins over time, and has an important role in many different cellular processes such as cell shape determination, motility, force generation, cytokinesis, amongst many others. Eukaryotic actin has been studied for decades and was for a long time considered a eukaryote-specific trait. However, in the early 2000s a bacterial actin homolog, MreB, was identified, characterized and found to have a cytoskeletal function and group within the superfamily of actin proteins. More recently, an actin cytoskeleton was also identified in archaea. The genome of the hyperthermophilic crenarchaeon Pyrobaculum calidifontis contains a five-gene cluster named Arcade encoding for an actin homolog, Crenactin, polymerizing into helical filaments spanning the whole length of the cell. Phylogenetic and structural studies place Crenactin closer to the eukaryotic actin than to the bacterial homologues. A significant difference, however, is that Crenactin can form single helical filaments in addition to filaments containing two intertwined proto filaments. The genome of the recently discovered Lokiarchaeota encodes several different actin homologues, termed Lokiactins, which are even more closely related to the eukaryotic actin than Crenactin. A primitive, dynamic actin-based cytoskeleton in archaea could have enabled the engulfment of the alphaproteobacterial progenitor of the mitochondria, a key-event in the evolution of eukaryotes.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius v. 20C, SE-106 91, Stockholm, Sweden.
| | - Karin Valegård
- Department of Cell and Molecular Biology/Molecular Biophysics, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology/Molecular Evolution, Uppsala University, Box 596, SE-751 24, Uppsala, Sweden
| |
Collapse
|
28
|
Yokobori SI, Nakajima Y, Akanuma S, Yamagishi A. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids. ARCHAEA (VANCOUVER, B.C.) 2016; 2016:1802675. [PMID: 27774041 PMCID: PMC5059525 DOI: 10.1155/2016/1802675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 01/25/2023]
Abstract
Bacteria and Eukarya have cell membranes with sn-glycerol-3-phosphate (G3P), whereas archaeal membranes contain sn-glycerol-1-phosphate (G1P). Determining the time at which cells with either G3P-lipid membranes or G1P-lipid membranes appeared is important for understanding the early evolution of terrestrial life. To clarify this issue, we reconstructed molecular phylogenetic trees of G1PDH (G1P dehydrogenase; EgsA/AraM) which is responsible for G1P synthesis and G3PDHs (G3P dehydrogenase; GpsA and GlpA/GlpD) and glycerol kinase (GlpK) which is responsible for G3P synthesis. Together with the distribution of these protein-encoding genes among archaeal and bacterial groups, our phylogenetic analyses suggested that GlpA/GlpD in the Commonote (the last universal common ancestor of all extant life with a cellular form, Commonote commonote) acquired EgsA (G1PDH) from the archaeal common ancestor (Commonote archaea) and acquired GpsA and GlpK from a bacterial common ancestor (Commonote bacteria). In our scenario based on this study, the Commonote probably possessed a G3P-lipid membrane synthesized enzymatically, after which the archaeal lineage acquired G1PDH followed by the replacement of a G3P-lipid membrane with a G1P-lipid membrane.
Collapse
Affiliation(s)
- Shin-ichi Yokobori
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiki Nakajima
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Akihiko Yamagishi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
29
|
Klinger CM, Spang A, Dacks JB, Ettema TJG. Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks. Mol Biol Evol 2016; 33:1528-41. [PMID: 26893300 DOI: 10.1093/molbev/msw034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system.
Collapse
Affiliation(s)
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs KU, Teske AP, Ettema TJG. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat Microbiol 2016; 1:16002. [PMID: 27572167 DOI: 10.1038/nmicrobiol.2016.2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/08/2016] [Indexed: 11/09/2022]
Abstract
The subsurface biosphere is largely unexplored and contains a broad diversity of uncultured microbes(1). Despite being one of the few prokaryotic lineages that is cosmopolitan in both the terrestrial and marine subsurface(2-4), the physiological and ecological roles of SAGMEG (South-African Gold Mine Miscellaneous Euryarchaeal Group) Archaea are unknown. Here, we report the metabolic capabilities of this enigmatic group as inferred from genomic reconstructions. Four high-quality (63-90% complete) genomes were obtained from White Oak River estuary and Yellowstone National Park hot spring sediment metagenomes. Phylogenomic analyses place SAGMEG Archaea as a deeply rooting sister clade of the Thermococci, leading us to propose the name Hadesarchaea for this new Archaeal class. With an estimated genome size of around 1.5 Mbp, the genomes of Hadesarchaea are distinctly streamlined, yet metabolically versatile. They share several physiological mechanisms with strict anaerobic Euryarchaeota. Several metabolic characteristics make them successful in the subsurface, including genes involved in CO and H2 oxidation (or H2 production), with potential coupling to nitrite reduction to ammonia (DNRA). This first glimpse into the metabolic capabilities of these cosmopolitan Archaea suggests they are mediating key geochemical processes and are specialized for survival in the subsurface biosphere.
Collapse
Affiliation(s)
- Brett J Baker
- Department of Marine Science, University of Texas Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Anders E Lind
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Cassandre Sara Lazar
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas P Teske
- Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
31
|
Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. Proc Natl Acad Sci U S A 2015; 112:15777-8. [PMID: 26699503 DOI: 10.1073/pnas.1520869112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
32
|
Williams TA, Embley TM. Changing ideas about eukaryotic origins. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140318. [PMID: 26323752 PMCID: PMC4571560 DOI: 10.1098/rstb.2014.0318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 11/12/2022] Open
Abstract
The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress.
Collapse
Affiliation(s)
- Tom A Williams
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|