1
|
Saroj S, Saha S, Ali A, Gupta SK, Bharadwaj A, Agrawal T, Pal S, Rakshit T. Plant Extracellular Nanovesicle-Loaded Hydrogel for Topical Antibacterial Wound Healing In Vivo. ACS APPLIED BIO MATERIALS 2025; 8:1-11. [PMID: 39377525 DOI: 10.1021/acsabm.4c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Bacterial infections impede wound healing and pose significant challenges in clinical care. There is an immediate need for safe and targeted antivirulence agents to fight bacterial infections effectively. In this regard, bioderived nanovesicles have shown significant promise. This work demonstrated significant antibacterial properties of extracellular nanovesicles derived from plant (mint) leaf juice (MENV). A hydrogel (HG) was developed using oxidized alginate and chitosan and loaded with antibacterial MENVs (MENV-HG). This formulation was investigated for topical HG dressings to treat Gram-positive Micrococcus luteus and Gram-negative Escherichia coli-invasive wounds. The developed HG was injectable, biocompatible (>95% cell was viable), nonhemolytic (<5% hemolytic capacity), self-healing and exhibited strong physical and mechanical interactions with the bacteria cells (MENV-HG-treated bacteria were significantly more elastic compared to the control in both M. luteus (1.01 ± 0.3 MPa, p < 0.005 vs 5.03 ± 2.6) and E. coli (5.81 ± 2.1 MPa vs 10.81 ± 3.8, p < 0.005). MENV-HG was topically applied on wounds with a slow MENV release profile, ensuring effective healing. These in vivo results demonstrated decreased inflammation and expedited healing within 10 days of treatment (wound area closure was 99% with MENV-HG treatment and 87% for control). Taken together, MENV-HGs have the potential for a scalable and sustainable wound dressing strategy that works satisfactorily for bacteria-infected wound healing and to be validated in clinical trials.
Collapse
Affiliation(s)
- Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sunita Saha
- Department of Chemistry, Indian Institute of Technology-Bhilai, Durg, Chhattisgarh 491002, India
| | - Akbar Ali
- Department of Chemistry, Indian Institute of Technology-Bhilai, Durg, Chhattisgarh 491002, India
| | - Sanjay Kumar Gupta
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Durg 490024, India
| | - Aditi Bharadwaj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Tanya Agrawal
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology-Bhilai, Durg, Chhattisgarh 491002, India
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg 491002, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
2
|
Nuti S, Fernández-Lodeiro A, Galhano J, Oliveira E, Duarte MP, Capelo-Martínez JL, Lodeiro C, Fernández-Lodeiro J. Tailoring Mesoporous Silica-Coated Silver Nanoparticles and Polyurethane-Doped Films for Enhanced Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:462. [PMID: 38470791 DOI: 10.3390/nano14050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The global increase in multidrug-resistant bacteria poses a challenge to public health and requires the development of new antibacterial materials. In this study, we examined the bactericidal properties of mesoporous silica-coated silver nanoparticles, varying the core sizes (ca. 28 nm and 51 nm). We also investigated gold nanoparticles (ca. 26 nm) coated with mesoporous silica as possible inert metal cores. To investigate the modification of antimicrobial activity after the surface charge change, we used silver nanoparticles with a silver core of 28 nm coated with a mesoporous shell (ca. 16 nm) and functionalized with a terminal amine group. Furthermore, we developed a facile method to create mesoporous silica-coated silver nanoparticles (Ag@mSiO2) doped films using polyurethane (IROGRAN®) as a polymer matrix via solution casting. The antibacterial effects of silver nanoparticles with different core sizes were analyzed against Gram-negative and Gram-positive bacteria relevant to the healthcare and food industry. The results demonstrated that gold nanoparticles were inert, while silver nanoparticles exhibited antibacterial effects against Gram-negative (Escherichia coli and Salmonella enterica subsp. enterica serovar Choleraesuis) and Gram-positive (Bacillus cereus) strains. In particular, the larger Ag@mSiO2 nanoparticles showed a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 18 µg/mL in the Salmonella strain. Furthermore, upon terminal amine functionalization, reversing the surface charge to positive values, there was a significant increase in the antibacterial activity of the NPs compared to their negative counterparts. Finally, the antimicrobial properties of the nanoparticle-doped polyurethane films revealed a substantial improvement in antibacterial efficacy. This study provides valuable information on the potential of mesoporous silica-coated silver nanoparticles and their applications in fighting multidrug-resistant bacteria, especially in the healthcare and food industries.
Collapse
Affiliation(s)
- Silvia Nuti
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Adrián Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Joana Galhano
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Maria Paula Duarte
- MEtRICs, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Javier Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jeronimo Dias, Num. 12, 2A, Sto Antonio de Caparica, 2825-466 Costa de Caparica, Portugal
| |
Collapse
|
3
|
Genth J, Schäfer K, Cassidy L, Graspeuntner S, Rupp J, Tholey A. Identification of proteoforms of short open reading frame-encoded peptides in Blautia producta under different cultivation conditions. Microbiol Spectr 2023; 11:e0252823. [PMID: 37782090 PMCID: PMC10715070 DOI: 10.1128/spectrum.02528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
IMPORTANCE The identification of short open reading frame-encoded peptides (SEP) and different proteoforms in single cultures of gut microbes offers new insights into a largely neglected part of the microbial proteome landscape. This is of particular importance as SEP provide various predicted functions, such as acting as antimicrobial peptides, maintaining cell homeostasis under stress conditions, or even contributing to the virulence pattern. They are, thus, taking a poorly understood role in structure and function of microbial networks in the human body. A better understanding of SEP in the context of human health requires a precise understanding of the abundance of SEP both in commensal microbes as well as pathogens. For the gut beneficial B. producta, we demonstrate the importance of specific environmental conditions for biosynthesis of SEP expanding previous findings about their role in microbial interactions.
Collapse
Affiliation(s)
- Jerome Genth
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kathrin Schäfer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
Agarwalla A, Ahmed W, Al-Marzouqi AH, Rizvi TA, Khan M, Zaneldin E. Characteristics and Key Features of Antimicrobial Materials and Associated Mechanisms for Diverse Applications. Molecules 2023; 28:8041. [PMID: 38138531 PMCID: PMC10745420 DOI: 10.3390/molecules28248041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since the Fourth Industrial Revolution, three-dimensional (3D) printing has become a game changer in manufacturing, particularly in bioengineering, integrating complex medical devices and tools with high precision, short operation times, and low cost. Antimicrobial materials are a promising alternative for combating the emergence of unforeseen illnesses and device-related infections. Natural antimicrobial materials, surface-treated biomaterials, and biomaterials incorporated with antimicrobial materials are extensively used to develop 3D-printed products. This review discusses the antimicrobial mechanisms of different materials by providing examples of the most commonly used antimicrobial materials in bioengineering and brief descriptions of their properties and biomedical applications. This review will help researchers to choose suitable antimicrobial agents for developing high-efficiency biomaterials for potential applications in medical devices, packaging materials, biomedical applications, and many more.
Collapse
Affiliation(s)
- Aaruci Agarwalla
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
5
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
6
|
Daitch AK, Goley ED. OpgH is an essential regulator of Caulobacter morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555136. [PMID: 37693447 PMCID: PMC10491104 DOI: 10.1101/2023.08.28.555136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bacterial growth and division rely on intricate regulation of morphogenetic complexes to remodel the cell envelope without compromising envelope integrity. Significant progress has been made in recent years towards understanding the regulation of cell wall metabolic enzymes. However, other cell envelope components play a role in morphogenesis as well. Components required to maintain osmotic homeostasis are among these understudied envelope-associated enzymes that may contribute to cell morphology. A primary factor required to protect envelope integrity in low osmolarity environments is OpgH, the synthase of osmoregulated periplasmic glucans (OPGs). Here, we demonstrate that OpgH is essential in the α-proteobacterium Caulobacter crescentus. Unexpectedly, depletion of OpgH results in striking asymmetric bulging and cell lysis, accompanied by misregulation of cell wall insertion and mislocalization of morphogenetic complexes. The enzymatic activity of OpgH is required for normal cell morphology as production of an OpgH mutant that disrupts a conserved glycosyltransferase motif phenocopies the depletion. Our data establish a surprising function for an OpgH homolog in morphogenesis and reveal an essential role of OpgH in maintaining proper cell morphology during normal growth and division in Caulobacter.
Collapse
Affiliation(s)
- Allison K. Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Current position: Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, United States of America
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
7
|
Aziz S, Ana ID, Yusuf Y, Pranowo HD. Synthesis of Biocompatible Silver-Doped Carbonate Hydroxyapatite Nanoparticles Using Microwave-Assisted Precipitation and In Vitro Studies for the Prevention of Peri-Implantitis. J Funct Biomater 2023; 14:385. [PMID: 37504880 PMCID: PMC10382064 DOI: 10.3390/jfb14070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
A carbonate-hydroxyapatite-based antibacterial implant material with low cytotoxicity was synthesized. The silver ion (Ag+) was incorporated into CHA material, resulting in silver-doped carbonate hydroxyapatite (CHA-Ag). The microwave-assisted precipitation method was used to synthesize the CHA-Ag material. The amount of Ag+ was varied at 0.005, 0.010, and 0.015 mol fractions (χAg). The XRD results showed that the diffractograms corresponded with hydroxyapatite (ICSD 98-05-1414), without any additional phase. The presence of carbonate ions was indicated by vibrations at wavenumber of 871, 1411, and 1466 cm-1 in the infrared spectra. The CHA-Ag materials were agglomerates of nanosized particles with low crystallinity. The particle size and crystallinity of the materials decreased due to the incorporation of CO32- and Ag+. The incorporated Ag+ successfully inhibited peri-implant-associated bacterial growth. The antibacterial ability increased alongside the increase in the Ag+ amount. The pre-osteoblast MC3T3E1 cell could grow up to >70% in the MTT assay, despite the use of Ag+ as a dopant. The cell viability was higher in the CHA-Ag-containing media than in the CHA-containing media. The MTT assay also revealed that the CHA-Ag cytotoxicity decreased even though the Ag+ amount increased. The CHA-Ag-15 had the lowest cytotoxicity and highest antibacterial activity. Therefore, the optimal amount of Ag+ in the CHA-Ag formulation was χAg = 0.015.
Collapse
Affiliation(s)
- Saifuddin Aziz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta 55281, Indonesia
| | - Yusril Yusuf
- Research Collaboration Center for Biomedical Scaffolds National Research and Innovation Agency of the Republic of Indonesia (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta 55281, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
8
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
9
|
Munir MU, Mayer-Gall T, Gutmann JS, Ali W, Etemad-Parishanzadeh O, Khanzada H, Mikučioniene D. Development of Carbon-Nanodot-Loaded PLA Nanofibers and Study of Their Barrier Performance for Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071195. [PMID: 37049289 PMCID: PMC10096691 DOI: 10.3390/nano13071195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic has increased the usage of personal protective equipment (PPE) all round the world and, in turn, it has also increased the waste caused by disposable PPE. This has exerted a severe environmental impact, so in our work, we propose the utilization of a sustainable electrospun nanofiber based on poly lactic acid (PLA), as it is biobased and conditionally degradable. We optimized the weight percentage of the PLA-precursor solution and found that 19% PLA produces fine nanofibers with good morphology. We also introduced carbon nanodots (CNDs) in the nanofibers and evaluated their antibacterial efficiency. We used 1, 2, 3, and 4% CNDs with 19% PLA and found increased antibacterial activity with increased concentrations of CNDs. Additionally, we also applied a spunbond-nanofiber layered assembly for the medical face masks and found that with the addition of only 0.45 mg/cm2 on the nonwoven sheet, excellent particle filtration efficiency of 96.5% and a differential pressure of 39 Pa/cm2 were achieved, meeting the basic requirements for Type I medical face masks (ASTM-F2100).
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424 Kaunas, Lithuania; (H.K.); (D.M.)
| | - Thomas Mayer-Gall
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
- Institute of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg-Essen, Universitätsstraße 2, D-45117 Essen, Germany
| | - Jochen S. Gutmann
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
- Institute of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg-Essen, Universitätsstraße 2, D-45117 Essen, Germany
| | - Wael Ali
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
- Institute of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg-Essen, Universitätsstraße 2, D-45117 Essen, Germany
| | - Omid Etemad-Parishanzadeh
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
| | - Haleema Khanzada
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424 Kaunas, Lithuania; (H.K.); (D.M.)
| | - Daiva Mikučioniene
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424 Kaunas, Lithuania; (H.K.); (D.M.)
| |
Collapse
|
10
|
Asif N, Fatima S, Siddiqui T, Fatma T. Investigation of morphological and biochemical changes of zinc oxide nanoparticles induced toxicity against multi drug resistance bacteria. J Trace Elem Med Biol 2022; 74:127069. [PMID: 36152464 DOI: 10.1016/j.jtemb.2022.127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Biofilms are microbial colonies that remain enclosed in an organic polymeric matrix substance on biotic and abiotic surfaces, allowing them to colonize medical equipments and involved in most device associated life intimidating infections. Due to their antimicrobial resistance there is an urgent need to discover novel biofilm preventive and therapeutic agents. METHODS ZnO NPs were synthesized using cyanobacteria Gleocapsa gelatinosa cell extract through green and cost-effective approach. Physiochemical characterization was done to determine their morphologies and size distribution. Antibiofilm and eradication activity of ZnO NPs was determined. Cell viability and internalization ability of ZnO NPs into biofilm was analyzed by flow cytometry. Confocal microscopy was done to visualize the disrupted biofilm morphology treated with ZnO NPs. RESULTS It was observed that ZnONPs were spherical in shape with 31-35 nm size and were moderately dispersed. ZnO NPs exhibited high antibiofilm activity against B. cereus and E. coli with minimum biofilm inhibitory concentration (MBIC) of ZnO NPs at 46.8 µg ml-1 and 93.7 µg ml-1. Flow cytometry analysis confirmed the reduced bacterial cell viability due to increased permeability, altered bacterial growth and enhanced production of intracellular ROS. Disruption of membrane integrity exhibited with reduced exopolysaccharides secretion and leakage of nucleic acids through UV-Vis spectroscopy. Results of confocal microscopy highlighted strong interaction of ZnO NPs with intracellular components leading to biofim destruction. CONCLUSIONS This study emphasizes the potential mechanisms underlying the selective bactericidal properties of ZnO NPs and highlighted the strong interaction of ZnO NPs with intracellular components leading to biofim destruction. Therefore, ZnO NPs could be considered as a promising antibiofilm agent and thus could expand the possibility to use as therapeutic agent.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Samreen Fatima
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tabassum Siddiqui
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
11
|
Revealing novel synergistic defense and acid tolerant performance of Escherichia coli in response to organic acid stimulation. Appl Microbiol Biotechnol 2022; 106:7577-7594. [DOI: 10.1007/s00253-022-12241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
12
|
Huang Y, Zhu F, Koh J, Stanton D, Chen S, Wang N. Proteomic and bioinformatic analyses of proteins in the outer membrane and extracellular compartments and outer membrane vesicles of Candidatus Liberibacter species. Front Microbiol 2022; 13:977710. [PMID: 36225379 PMCID: PMC9548881 DOI: 10.3389/fmicb.2022.977710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating citrus disease in the world. Candidatus Liberibacter asiaticus (Las) is the prevalent HLB pathogen, which is yet to be cultivated. A recent study demonstrates that Las does not contain pathogenicity factors that are directly responsible for HLB symptoms. Instead, Las triggers systemic and chronic immune responses, representing a pathogen-triggered immune disease. Importantly, overproduction of reactive oxygen species (ROS) causes systemic cell death of phloem tissues, thus causing HLB symptoms. Because Las resides in the phloem tissues, it is expected that phloem cell might recognize outer membrane proteins, outer membrane vesicle (OMV) proteins and extracellular proteins of Las to contribute to the immune responses. Because Las has not been cultivated, we used Liberibacter crescens (Lcr) as a surrogate to identify proteins in the OM fraction, OMV proteins and extracellular proteins by liquid chromatography with tandem mass spectrometry (LC–MS/MS). We observed OMVs of Lcr under scanning electron microscope, representing the first experimental evidence that Liberibacter can deliver proteins to the extracellular compartment. In addition, we also further analyzed LC–MS/MS data using bioinformatic tools. Our study provides valuable information regarding the biology of Ca. Liberibacter species and identifies many putative proteins that may interact with host proteins in the phloem tissues.
Collapse
Affiliation(s)
- Yixiao Huang
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Fanchao Zhu
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Daniel Stanton
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
13
|
Rao SQ, Zhang RY, Chen R, Gao YJ, Gao L, Yang ZQ. Nanoarchitectonics for enhanced antibacterial activity with Lactobacillus buchneri S-layer proteins-coated silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128029. [PMID: 34942455 DOI: 10.1016/j.jhazmat.2021.128029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Various multi-drug-resistant microorganisms have appeared while a single antibacterial agent is increasingly no longer adequate for dealing with these resistant microorganisms. Herein, commercially purchased 50 nm-average-diameter silver nanoparticles (AgNPs) and Lactobacillus buchneri-isolated surface-layer proteins (SLPs) as a capping agent were used to fabricate a hybrid antibacterial agent (SLP-AgNPs) with enhanced antibacterial activity, and the possible synergistic antibacterial mechanism was explored. Characterization results revealed that SLP-AgNPs were uniformly surrounded by protein corona provided from SLP, and the formulations were mainly mediated by the electrostatic interactions and hydrogen bonding, which was evidenced by the results of Fourier transform infrared spectroscopy. According to the antibacterial tests, the minimum inhibitory concentration of SLP-AgNPs against Salmonella enterica (0.010 mg/mL) and Staphylococcus aureus (0.005 mg/mL) was 5-10 times lower than that of bare AgNPs, and while SLP-AgNPs showed a higher antibiofilm activity. Furthermore, bacterial cells exposed to SLP-AgNPs exhibited higher cell membrane permeability and stronger inhibition of respiratory-chain dehydrogenase activity, resulting in more severe cell death compared with bare AgNPs. The synergistic effect of SLP on AgNPs was probably carried out by enhanced function of adhesion to bacteria and antibacterial ability of SLP and SLP's supramolecular lattice structure on the sustained release of silver ion.
Collapse
Affiliation(s)
- Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China; Postdoctoral Mobile Station of Biology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ru-Yi Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Rui Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
14
|
Ali EA, Nada AA, Al-Moghazy M. Self-stick membrane based on grafted gum Arabic as active food packaging for cheese using cinnamon extract. Int J Biol Macromol 2021; 189:114-123. [PMID: 34418416 DOI: 10.1016/j.ijbiomac.2021.08.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Encapsulation of volatile essential oils has been investigated to provide an active food packaging (AFP) material with more control over their fast release and pungent smell. In this work, Gum Arabic-based adhesive membrane was developed as a self-stick AFP material, delivering cinnamon essential oil (CEO) in vapor phase. Gum Arabic (GA) was grafted with butyl acrylate (BA) and hydroxyethyl methacrylate [GA-g-poly(BA-HEMA)]. Adhesive membrane was characterized by means of spectral, physicochemical and rheological analysis. GA-adhesive membrane made of 5% wt/v GA, 3.5 m mol HEMA, and 87 m mol BA with 21 N/m tack are loaded with 4, 8 and 10% v/v of CEO and used for antimicrobial bioassays. GA-g-poly(BA-HEMA) membrane prolonged CEO release up to 2 days. 8%v/v CEO showed superior activities against both Gram negative and positive bacteria. Shelf-life of cheese samples, packed with the self-stick membranes loaded with cinnamon extract, has extended from 3 to 8 weeks. Cheese samples that inoculated with shiga toxin producing E. coli O157:H7 and packed in plastic boxes with the self-stick AFP (4, 8 and 10 % CEO), showed significant reduction in the total bacteria counts.
Collapse
Affiliation(s)
- Eman AboBakr Ali
- Polymers & Pigments Department, Chemical Industries Research Division, National Research Centre, Dokki, Giza 12211, Egypt
| | - Ahmed A Nada
- Pre-treatment and Finishing of Cellulosic Fibers Department, Textile Research Division, National Research Centre (Scopus Affiliation ID 60014618), Dokki, Giza 12211, Egypt.
| | - Marwa Al-Moghazy
- Dairy Science Department, Food Industries and Nutrition Research Division, National Research Centre, Dokki, Giza 12211, Egypt
| |
Collapse
|
15
|
Fabrication of cellulose-based adhesive composite as an active packaging material to extend the shelf life of cheese. Int J Biol Macromol 2020; 160:264-275. [DOI: 10.1016/j.ijbiomac.2020.05.217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
|
16
|
Ahmed B, Solanki B, Zaidi A, Khan MS, Musarrat J. Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nanocolloid-bacteria interface. Toxicol Res (Camb) 2019; 8:246-261. [PMID: 30997024 PMCID: PMC6417486 DOI: 10.1039/c8tx00267c] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
This study was aimed to fill the critical gap of knowledge regarding the interaction between green zinc oxide nanoparticles (ZnONPs) and bacterial interface. Wurtzite phase ZnONPs with a band gap energy of 3.28 eV were produced by exploiting a simple and green biosynthesis method using an inexpensive precursor of A. indica leaf extract and zinc nitrate. ZnONPs were characterized using UV-Vis spectroscopy, XRD, FTIR, SEM, EDX, DLS, TEM, and zeta-potential analysis. The primary size obtained was 26.3 nm (XRD) and 33.5 ± 6.5 nm (TEM), whereas, the secondary size was found to be 287 ± 5.2 nm with -32.8 ± 1.8 mV ζ-potential denoting the physical colloid chemistry of ZnONPs. Crystallinity and the spherical morphology of ZnONPs were also evident with some sort of particle agglomeration. ZnONPs retained plant functional groups endorsing their hydrophilic character. The antibacterial and antibiofilm activity of ZnONPs was significant (p ≤ 0.05) and the MIC/MBC against most frequent clinical isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus ranged from 0.5 to 1.0 (MIC)/1.0 to 1.5 mg ml-1 (MBC). The dissolution of ZnONPs to Zn2+ ions in a nutrient medium increased as a result of interaction with the bacterial surface and metabolites. Substantial surface binding of ZnONPs followed by intracellular uptake disrupted the cell morphology and caused obvious injury to the cell membrane. Interrupted bacterial growth kinetics, loss of cell respiration, enhanced production of intracellular ROS, and the leakage of the cytoplasmic content unequivocally suggested a strong interaction of ZnONPs with the exterior cell surface and intracellular components, eventually leading to cell death and destruction of biofilms. Overall, the results elucidated eco-friendly production of ZnONPs expressing a prominent interfacial correlation with bacteria and hence, prospecting the use of green ZnONPs as effective nanoantibiotics.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Bushra Solanki
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Almas Zaidi
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Javed Musarrat
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| |
Collapse
|
17
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
18
|
Bhat SV, Kamencic B, Körnig A, Shahina Z, Dahms TES. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli. Front Microbiol 2018; 9:44. [PMID: 29472899 PMCID: PMC5810288 DOI: 10.3389/fmicb.2018.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Belma Kamencic
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
19
|
Liu S, Zhang XX. Small colony variants are more susceptible to copper-mediated contact killing for Pseudomonas aeruginosa and Staphylococcus aureus. J Med Microbiol 2016; 65:1143-1151. [DOI: 10.1099/jmm.0.000348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sha Liu
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand
| | - Xue-Xian Zhang
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand
| |
Collapse
|