1
|
Ospina-Rozo L, Medina I, Hugall A, Rankin KJ, Roberts NW, Roberts A, Mitchell A, Reid CAM, Moussalli A, Stuart-Fox D. Polarization and reflectance are linked to climate, size and mechanistic constraints in a group of scarab beetles. Sci Rep 2024; 14:29349. [PMID: 39592655 PMCID: PMC11599573 DOI: 10.1038/s41598-024-80325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Beetles exhibit an extraordinary diversity of brilliant and colourful appearances and optical effects invisible to humans. Their underlying mechanisms have received some attention, but we know little about the ecological variables driving their evolution. Here we investigated environmental correlates of reflectivity and circular polarization in a group of optically diverse beetles (Scarabaeidae-Rutelinae). We quantified the optical properties of 261 specimens representing 46 species using spectrophotometry and calibrated photographs. Then, we examined associations between these properties and environmental variables such as temperature, humidity and vegetation cover, controlling for body size and phylogenetic relatedness. Our results showed larger beetles have higher visible reflectivity in drier environments. Unexpectedly, near-infrared (NIR) reflectivity was not correlated with ecological variables. However, we found a correlation between humidity and polarization (chiral nanostructures). We identified trade-offs between optical properties: beetles without polarization-associated nanostructures had higher NIR reflectivity. By contrast, visible reflectivity was negatively correlated with the accumulation of pigments such as melanin. Our study highlights the value of a macroecological approach for testing alternative hypotheses to explain the diversity of optical effects in beetles and to understand the link between structure and function.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Iliana Medina
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Hugall
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Katrina J Rankin
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Mitchell
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Chris A M Reid
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Adnan Moussalli
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
2
|
Ospina-Rozo L, Subbiah J, Seago A, Stuart-Fox D. Pretty Cool Beetles: Can Manipulation of Visible and Near-Infrared Sunlight Prevent Overheating? Integr Org Biol 2022; 4:obac036. [PMID: 36110288 PMCID: PMC9470487 DOI: 10.1093/iob/obac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Passive thermoregulation is an important strategy to prevent overheating in thermally challenging environments. Can the diversity of optical properties found in Christmas beetles (Rutelinae) be an advantage to keep cool? We measured changes in temperature of the elytra of 26 species of Christmas beetles, exclusively due to direct radiation from a solar simulator in visible (VIS: 400–700 nm) and near infrared (NIR: 700–1700 nm) wavebands. Then, we evaluated if the optical properties of elytra could predict their steady state temperature and heating rates, while controlling for size. We found that higher absorptivity increases the heating rate and final steady state of the beetle elytra in a biologically significant range (3 to 5°C). There was substantial variation in the absorptivity of Christmas beetle elytra; and this variation was achieved by different combinations of reflectivity and transmissivity in both VIS and NIR. Size was an important factor predicting the change in temperature of the elytra after 5 min (steady state) but not maximum heating rate. Lastly, we show that the presence of the elytra covering the body of the beetle can reduce heating of the body itself. We propose that beetle elytra can act as a semi-insulating layer to enable passive thermoregulation through high reflectivity of elytra, resulting in low absorptivity of solar radiation. Alternatively, if beetle elytra absorb a high proportion of solar radiation, they may reduce heat transfer from the elytra to the body through behavioral or physiological mechanisms.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne , Building 147, Parkville Victoria 3010, Australia
| | - Jegadesan Subbiah
- School of Chemistry, Bio21 Institute - University of Melbourne , 30 Flemington Road, Victoria 3010, Australia
| | - Ainsley Seago
- Carnegie Museum of Natural History , 4400 Forbes Ave, Pittsburgh PA 15213, USA
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne , Building 147, Parkville Victoria 3010, Australia
| |
Collapse
|
3
|
Zhong J, Song Z, Zhang L, Li X, He Q, Lu Y, Kariko S, Shaw P, Liu L, Ye F, Li L, Shuai J. Assembly of Guanine Crystals as a Low-Polarizing Broadband Multilayer Reflector in a Spider, Phoroncidia rubroargentea. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32982-32993. [PMID: 35834638 DOI: 10.1021/acsami.2c09546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The diminishing of the polarization effect is important in the applications of dielectric multilayer reflectors in many optical systems, such as low-loss broadband waveguides, optical fibers, and LEDs. Low-polarizing broadband reflections were identified from birefringent-guanine-crystal-based multilayer reflectors in the skins of some fish. Previous models for these intriguing natural optical phenomena suggested the combined action of two populations of guanine crystals with an orthogonal low-refractive-index optic axis. Here we report a novel realization of polarization-insensitive broadband reflectivity in a spider, Phoroncidia rubroargentea, based solely on the type of guanine crystals with the low-refractive-index optic axis normal to the crystal plates. We examined the three-dimensional structure of the guanine assembly in the spider and performed finite-difference time-domain (FDTD) optical modeling of the guanine-based multilayer reflector. Comparative modeling studies reveal that the biological selection of the guanine crystal type and specific spatial arrangement work synergistically to optimize the polarization-insensitive broadband reflection. This study demonstrates the importance of both crystallographic characteristics and 3D arrangement of guanine crystals in understanding relevant natural optical effects and also provides new insights into similar broadband, low-polarizing reflections in biological optical systems. Learning from relevant biofunctional assembly of guanine crystals could promote the bioinspired design of nonpolarizing dielectric multilayer reflectors.
Collapse
Affiliation(s)
- Jinjin Zhong
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zhengyong Song
- Department of Electronic Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Long Zhang
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Li
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingzu He
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuer Lu
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Sarah Kariko
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02318, United States
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Liyu Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ling Li
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, and National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
4
|
Franklin AM, Rankin KJ, Ospina Rozo L, Medina I, Garcia JE, Ng L, Dong C, Wang L, Aulsebrook AE, Stuart‐Fox D. Cracks in the mirror hypothesis: High specularity does not reduce detection or predation risk. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda M. Franklin
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Katrina J. Rankin
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Laura Ospina Rozo
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Iliana Medina
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Jair E. Garcia
- Bio‐Inspired Digital Sensing Lab RMIT University Melbourne Vic. Australia
| | - Leslie Ng
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Caroline Dong
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Lu‐Yi Wang
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Anne E. Aulsebrook
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Devi Stuart‐Fox
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
5
|
Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes. Sci Rep 2021; 11:16157. [PMID: 34373560 PMCID: PMC8352966 DOI: 10.1038/s41598-021-95713-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022] Open
Abstract
Hyperspectral data encode information from electromagnetic radiation (i.e., color) of any object in the form of a spectral signature; these data can then be used to distinguish among materials or even map whole landscapes. Although hyperspectral data have been mostly used to study landscape ecology, floral diversity and many other applications in the natural sciences, we propose that spectral signatures can be used for rapid assessment of faunal biodiversity, akin to DNA barcoding and metabarcoding. We demonstrate that spectral signatures of individual, live fish specimens can accurately capture species and clade-level differences in fish coloration, specifically among piranhas and pacus (Family Serrasalmidae), fishes with a long history of taxonomic confusion. We analyzed 47 serrasalmid species and could distinguish spectra among different species and clades, with the method sensitive enough to document changes in fish coloration over ontogeny. Herbivorous pacu spectra were more like one another than they were to piranhas; however, our method also documented interspecific variation in pacus that corresponds to cryptic lineages. While spectra do not serve as an alternative to the collection of curated specimens, hyperspectral data of fishes in the field should help clarify which specimens might be unique or undescribed, complementing existing molecular and morphological techniques.
Collapse
|
6
|
Dou S, Xu H, Zhao J, Zhang K, Li N, Lin Y, Pan L, Li Y. Bioinspired Microstructured Materials for Optical and Thermal Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000697. [PMID: 32686250 DOI: 10.1002/adma.202000697] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Precise optical and thermal regulatory systems are found in nature, specifically in the microstructures on organisms' surfaces. In fact, the interaction between light and matter through these microstructures is of great significance to the evolution and survival of organisms. Furthermore, the optical regulation by these biological microstructures is engineered owing to natural selection. Herein, the role that microstructures play in enhancing optical performance or creating new optical properties in nature is summarized, with a focus on the regulation mechanisms of the solar and infrared spectra emanating from the microstructures and their role in the field of thermal radiation. The causes of the unique optical phenomena are discussed, focusing on prevailing characteristics such as high absorption, high transmission, adjustable reflection, adjustable absorption, and dynamic infrared radiative design. On this basis, the comprehensive control performance of light and heat integrated by this bioinspired microstructure is introduced in detail and a solution strategy for the development of low-energy, environmentally friendly, intelligent thermal control instruments is discussed. In order to develop such an instrument, a microstructural design foundation is provided.
Collapse
Affiliation(s)
- Shuliang Dou
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Hongbo Xu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiupeng Zhao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ke Zhang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Na Li
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yipeng Lin
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Pan
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
7
|
Bagge LE, Kenton AC, Lyons BA, Wehling MF, Goldstein DH. Mueller matrix characterizations of circularly polarized reflections from golden scarab beetles. APPLIED OPTICS 2020; 59:F85-F93. [PMID: 32749282 DOI: 10.1364/ao.398832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Circularly polarized light (CPL) reflections are rare in nature. Only a few animal groups-most notably certain stomatopod crustaceans and certain beetles in the family Scarabaeidae-are known to reflect CPL from incident unpolarized light. Here, we examine five species of metallic scarabs in the genus Chrysina that, to the naked human eye, look remarkably similar. Using a spectropolarimetric reflectometer to characterize the complete Mueller matrix elements of the beetles' elytral surfaces, we found that four of the five species were strongly left-handed circularly polarized (LHCP), and only one scarab species, Chrysina resplendens, had an overall lower degree of polarization and switched from LHCP to right-handed circularly polarized reflectance depending on wavelength.
Collapse
|
8
|
Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T. The biology of color. Science 2017; 357:357/6350/eaan0221. [DOI: 10.1126/science.aan0221] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Endler JA, Mappes J. The current and future state of animal coloration research. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160352. [PMID: 28533467 PMCID: PMC5444071 DOI: 10.1098/rstb.2016.0352] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Animal colour patterns are a model system for understanding evolution because they are unusually accessible for study and experimental manipulation. This is possible because their functions are readily identifiable. In this final paper of the symposium we provide a diagram of the processes affecting colour patterns and use this to summarize their functions and put the other papers in a broad context. This allows us to identify significant 'holes' in the field that only become obvious when we see the processes affecting colour patterns, and their interactions, as a whole. We make suggestions about new directions of research that will enhance our understanding of both the evolution of colour patterns and visual signalling but also illuminate how the evolution of multiple interacting traits works.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, PO Box 35, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|