1
|
Chen TW, Liao HW, Noble M, Siao JY, Cheng YH, Chiang WC, Lo YT, Chang CT. Human DCP1 is crucial for mRNA decapping and possesses paralog-specific gene regulating functions. eLife 2024; 13:RP94811. [PMID: 39485278 PMCID: PMC11530239 DOI: 10.7554/elife.94811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Michelle Noble
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Jing-Yi Siao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu-Hsuan Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi-Tzu Lo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Vidya E, Jami-Alahmadi Y, Mayank AK, Rizwan J, Xu JMS, Cheng T, Leventis R, Sonenberg N, Wohlschlegel JA, Vera M, Duchaine TF. EDC-3 and EDC-4 regulate embryonic mRNA clearance and biomolecular condensate specialization. Cell Rep 2024; 43:114781. [PMID: 39331503 DOI: 10.1016/j.celrep.2024.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Animal development is dictated by the selective and timely decay of mRNAs in developmental transitions, but the impact of mRNA decapping scaffold proteins in development is unclear. This study unveils the roles and interactions of the DCAP-2 decapping scaffolds EDC-3 and EDC-4 in the embryonic development of C. elegans. EDC-3 facilitates the timely removal of specific embryonic mRNAs, including cgh-1, car-1, and ifet-1 by reducing their expression and preventing excessive accumulation of DCAP-2 condensates in somatic cells. We further uncover a role for EDC-3 in defining the boundaries between P bodies, germ granules, and stress granules. Finally, we show that EDC-4 counteracts EDC-3 and engenders the assembly of DCAP-2 with the GID (CTLH) complex, a ubiquitin ligase involved in maternal-to-zygotic transition (MZT). Our findings support a model where multiple RNA decay mechanisms temporally clear maternal and zygotic mRNAs throughout embryonic development.
Collapse
Affiliation(s)
- Elva Vidya
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Jia Ming Stella Xu
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Tianhao Cheng
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Rania Leventis
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada.
| |
Collapse
|
3
|
Potužník JF, Cahova H. If the 5' cap fits (wear it) - Non-canonical RNA capping. RNA Biol 2024; 21:1-13. [PMID: 39007883 PMCID: PMC11253889 DOI: 10.1080/15476286.2024.2372138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
- Department of Cell Biology, Charles University, Faculty of Science, Prague 2, Czechia
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| |
Collapse
|
4
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
5
|
Kershaw CJ, Nelson MG, Castelli LM, Jennings MD, Lui J, Talavera D, Grant CM, Pavitt GD, Hubbard SJ, Ashe MP. Translation factor and RNA binding protein mRNA interactomes support broader RNA regulons for posttranscriptional control. J Biol Chem 2023; 299:105195. [PMID: 37633333 PMCID: PMC10562868 DOI: 10.1016/j.jbc.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Michael G Nelson
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Simon J Hubbard
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Kramer S, Karolak NK, Odenwald J, Gabiatti B, Castañeda Londoño P, Zavřelová A, Freire E, Almeida K, Braune S, Moreira C, Eder A, Goos C, Field M, Carrington M, Holetz F, Górna M, Zoltner M. A unique mRNA decapping complex in trypanosomes. Nucleic Acids Res 2023; 51:7520-7540. [PMID: 37309887 PMCID: PMC10415143 DOI: 10.1093/nar/gkad497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Removal of the mRNA 5' cap primes transcripts for degradation and is central for regulating gene expression in eukaryotes. The canonical decapping enzyme Dcp2 is stringently controlled by assembly into a dynamic multi-protein complex together with the 5'-3'exoribonuclease Xrn1. Kinetoplastida lack Dcp2 orthologues but instead rely on the ApaH-like phosphatase ALPH1 for decapping. ALPH1 is composed of a catalytic domain flanked by C- and N-terminal extensions. We show that T. brucei ALPH1 is dimeric in vitro and functions within a complex composed of the trypanosome Xrn1 ortholog XRNA and four proteins unique to Kinetoplastida, including two RNA-binding proteins and a CMGC-family protein kinase. All ALPH1-associated proteins share a unique and dynamic localization to a structure at the posterior pole of the cell, anterior to the microtubule plus ends. XRNA affinity capture in T. cruzi recapitulates this interaction network. The ALPH1 N-terminus is not required for viability in culture, but essential for posterior pole localization. The C-terminus, in contrast, is required for localization to all RNA granule types, as well as for dimerization and interactions with XRNA and the CMGC kinase, suggesting possible regulatory mechanisms. Most significantly, the trypanosome decapping complex has a unique composition, differentiating the process from opisthokonts.
Collapse
Affiliation(s)
| | - Natalia Katarzyna Karolak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Bernardo Gabiatti
- Biocenter, University of Würzburg, Würzburg, Germany
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | | | - Anna Zavřelová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | | | | | - Silke Braune
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Claudia Moreira
- Biocenter, University of Würzburg, Würzburg, Germany
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Amelie Eder
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Carina Goos
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Mark Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Fabiola Holetz
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| |
Collapse
|
7
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
8
|
Arfelli VC, Chang YC, Bagnoli JW, Kerbs P, Ciamponi FE, Paz LMDS, Pankivskyi S, de Matha Salone J, Maucuer A, Massirer KB, Enard W, Kuster B, Greif PA, Archangelo LF. UHMK1 is a novel splicing regulatory kinase. J Biol Chem 2023; 299:103041. [PMID: 36803961 PMCID: PMC10033318 DOI: 10.1016/j.jbc.2023.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.
Collapse
Affiliation(s)
- Vanessa C Arfelli
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Yun-Chien Chang
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Paul Kerbs
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe E Ciamponi
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Laissa M da S Paz
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Serhii Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Katlin B Massirer
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Philipp A Greif
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Vavilis T, Stamoula E, Ainatzoglou A, Sachinidis A, Lamprinou M, Dardalas I, Vizirianakis IS. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023; 15:pharmaceutics15010166. [PMID: 36678793 PMCID: PMC9866414 DOI: 10.3390/pharmaceutics15010166] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Protein replacement therapy is an umbrella term used for medical treatments that aim to substitute or replenish specific protein deficiencies that result either from the protein being absent or non-functional due to mutations in affected patients. Traditionally, such an approach requires a well characterized but arduous and expensive protein production procedure that employs in vitro expression and translation of the pharmaceutical protein in host cells, followed by extensive purification steps. In the wake of the SARS-CoV-2 pandemic, mRNA-based pharmaceuticals were recruited to achieve rapid in vivo production of antigens, proving that the in vivo translation of exogenously administered mRNA is nowadays a viable therapeutic option. In addition, the urgency of the situation and worldwide demand for mRNA-based medicine has led to an evolution in relevant technologies, such as in vitro transcription and nanolipid carriers. In this review, we present preclinical and clinical applications of mRNA as a tool for protein replacement therapy, alongside with information pertaining to the manufacture of modified mRNA through in vitro transcription, carriers employed for its intracellular delivery and critical quality attributes pertaining to the finished product.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Dentistry, European University Cyprus, Nicosia 2404, Cyprus
- Correspondence:
| | - Eleni Stamoula
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandra Ainatzoglou
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia 1700, Cyprus
| |
Collapse
|
10
|
Liu A, Wang X. The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Front Cell Dev Biol 2022; 10:901510. [PMID: 35912117 PMCID: PMC9326091 DOI: 10.3389/fcell.2022.901510] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
After over a decade of development, mRNA has recently matured into a potent modality for therapeutics. The advantages of mRNA therapeutics, including their rapid development and scalability, have been highlighted due to the SARS-CoV-2 pandemic, in which the first two clinically approved mRNA vaccines have been spotlighted. These vaccines, as well as multiple other mRNA therapeutic candidates, are modified to modulate their immunogenicity, stability, and translational efficiency. Despite the importance of mRNA modifications for harnessing the full efficacy of mRNA drugs, the full breadth of potential modifications has yet to be explored clinically. In this review, we survey the field of mRNA modifications, highlighting their ability to tune the properties of mRNAs. These include cap and tail modifications, nucleoside substitutions, and chimeric mRNAs, each of which represents a component of mRNA that can be exploited for modification. Additionally, we cover clinical and preclinical trials of the modified mRNA platform not only to illustrate the promise of modified mRNAs but also to call attention to the room for diversifying future therapeutics.
Collapse
Affiliation(s)
- Albert Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
11
|
He F, Wu C, Jacobson A. Dcp2 C-terminal cis-binding elements control selective targeting of the decapping enzyme by forming distinct decapping complexes. eLife 2022; 11:74410. [PMID: 35604319 PMCID: PMC9170289 DOI: 10.7554/elife.74410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
A single Dcp1-Dcp2 decapping enzyme targets diverse classes of yeast mRNAs for decapping-dependent 5' to 3' decay, but the molecular mechanisms controlling mRNA selectivity by the enzyme remain elusive. Through extensive genetic analyses we reveal that Dcp2 C-terminal domain cis-regulatory elements control decapping enzyme target specificity by orchestrating formation of distinct decapping complexes. Two Upf1-binding motifs direct the decapping enzyme to NMD substrates, a single Edc3-binding motif targets both Edc3 and Dhh1 substrates, and Pat1-binding leucine-rich motifs target Edc3 and Dhh1 substrates under selective conditions. Although it functions as a unique targeting component of specific complexes, Edc3 is a common component of multiple complexes. Scd6 and Xrn1 also have specific binding sites on Dcp2, allowing them to be directly recruited to decapping complexes. Collectively, our results demonstrate that Upf1, Edc3, Scd6, and Pat1 function as regulatory subunits of the holo-decapping enzyme, controlling both its substrate specificity and enzymatic activation.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, United States
| |
Collapse
|
12
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
14
|
Rahman N, Sun J, Li Z, Pattnaik A, Mohallem R, Wang M, Kazemian M, Aryal UK, Andrisani O. The cytoplasmic LSm1-7 and nuclear LSm2-8 complexes exert opposite effects on Hepatitis B virus biosynthesis and interferon responses. Front Immunol 2022; 13:970130. [PMID: 36016928 PMCID: PMC9396650 DOI: 10.3389/fimmu.2022.970130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Despite many studies on host or viral gene expression, how the cellular proteome responds to internal or external cues during the infection process remains unclear. In this study, we used a Hepatitis B Virus (HBV) replication model and performed proteomic analyses to understand how HBV evades innate immunity as a function of cell cycle progression. Specifically, we performed proteomic analyses of HBV-replicating cells in G1/S and G2/M phases, as a function of IFN-α treatment. We identified that the conserved LSm (Like-Sm1-8) proteins were differentially regulated in HBV replicating cells treated with IFN-α. Specifically, in G2/M phase, IFN-α increased protein level of LSm1, the unique subunit of cytoplasmic LSm1-7 complex involved in mRNA decay. By contrast, IFN-α decreased LSm8, the unique subunit of nuclear LSm2-8 complex, a chaperone of U6 spliceosomal RNA, suggesting the cytoplasmic LSm1-7 complex is antiviral, whereas the nuclear LSm2-8 complex is pro-viral. In HBV replication and infection models, siRNA-mediated knockdown of LSm1 increased all viral RNAs. Conversely, LSm8 knockdown reduced viral RNA levels, dependent on N6-adenosine methylation (m6A) of the epsilon stem-loop at the 5' end of pre-Core/pregenomic (preC/pg) RNA. Methylated RNA immunoprecipitation (MeRIP) assays demonstrated reduced viral RNA methylation by LSm8 knockdown, dependent on the 5' m6A modification, suggesting the LSm2-8 complex has a role in mediating this modification. Interestingly, splicing inhibitor Cp028 acting upstream of the LSm2-8 complex suppressed viral RNA levels without reducing the 5' m6A modification. This observation suggests Cp028 has novel antiviral effects, likely potentiating IFN-α-mediated suppression of HBV biosynthesis.
Collapse
Affiliation(s)
- Naimur Rahman
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Jiazeng Sun
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Zhili Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Aryamav Pattnaik
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Mengbo Wang
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Majid Kazemian
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2021; 10:50. [PMID: 35052730 PMCID: PMC8773365 DOI: 10.3390/biomedicines10010050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the quest for a formidable weapon against the SARS-CoV-2 pandemic, mRNA therapeutics have stolen the spotlight. mRNA vaccines are a prime example of the benefits of mRNA approaches towards a broad array of clinical entities and druggable targets. Amongst these benefits is the rapid cycle "from design to production" of an mRNA product compared to their peptide counterparts, the mutability of the production line should another target be chosen, the side-stepping of safety issues posed by DNA therapeutics being permanently integrated into the transfected cell's genome and the controlled precision over the translated peptides. Furthermore, mRNA applications are versatile: apart from vaccines it can be used as a replacement therapy, even to create chimeric antigen receptor T-cells or reprogram somatic cells. Still, the sudden global demand for mRNA has highlighted the shortcomings in its industrial production as well as its formulation, efficacy and applicability. Continuous, smart mRNA manufacturing 4.0 technologies have been recently proposed to address such challenges. In this work, we examine the lab and upscaled production of mRNA therapeutics, the mRNA modifications proposed that increase its efficacy and lower its immunogenicity, the vectors available for delivery and the stability considerations concerning long-term storage.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evdokia Mandala
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Davidopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine K Markopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
17
|
Mutations in genes encoding regulators of mRNA decapping and translation initiation: links to intellectual disability. Biochem Soc Trans 2021; 48:1199-1211. [PMID: 32412080 PMCID: PMC7329352 DOI: 10.1042/bst20200109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) affects at least 1% of the population, and typically presents in the first few years of life. ID is characterized by impairments in cognition and adaptive behavior and is often accompanied by further delays in language and motor skills, as seen in many neurodevelopmental disorders (NDD). Recent widespread high-throughput approaches that utilize whole-exome sequencing or whole-genome sequencing have allowed for a considerable increase in the identification of these pathogenic variants in monogenic forms of ID. Notwithstanding this progress, the molecular and cellular consequences of the identified mutations remain mostly unknown. This is particularly important as the associated protein dysfunctions are the prerequisite to the identification of targets for novel drugs of these rare disorders. Recent Next-Generation sequencing-based studies have further established that mutations in genes encoding proteins involved in RNA metabolism are a major cause of NDD. Here, we review recent studies linking germline mutations in genes encoding factors mediating mRNA decay and regulators of translation, namely DCPS, EDC3, DDX6 helicase and ID. These RNA-binding proteins have well-established roles in mRNA decapping and/or translational repression, and the mutations abrogate their ability to remove 5′ caps from mRNA, diminish their interactions with cofactors and stabilize sub-sets of transcripts. Additional genes encoding RNA helicases with roles in translation including DDX3X and DHX30 have also been linked to NDD. Given the speed in the acquisition, analysis and sharing of sequencing data, and the importance of post-transcriptional regulation for brain development, we anticipate mutations in more such factors being identified and functionally characterized.
Collapse
|
18
|
A Novel Proximity Biotinylation Assay Based on the Self-Associating Split GFP1-10/11. Proteomes 2020; 8:proteomes8040037. [PMID: 33276494 PMCID: PMC7709110 DOI: 10.3390/proteomes8040037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023] Open
Abstract
Proximity biotinylation was developed to detect physiologically relevant protein–protein interactions in living cells. In this method, the protein of interest is tagged with a promiscuous biotin ligase, such as BioID or BioID2, which produces activated biotin that reacts with nearby proteins; these proteins can subsequently be purified and identified by mass spectrometry. Here we report a novel modification of this technique by combining it with a self-associating split-GFP system in which we exploit the high-affinity interaction between GFP1–10 and GFP11 to recruit BioID2 to the protein of interest. As a test case, we fused GFP11 to clathrin light chain (CLTB) and BioID2 to GFP1–10. Co-expression of GFP11-CLTB and BioID2-GFP1–10 yielded a green fluorescent complex that co-localized with clathrin heavy chain. To facilitate removal of non-specifically biotinylated proteins, we generated an inducible cell line expressing BioID2-GFP1–10. Proximity biotinylation in this cell line with GFP11-CLTB yielded a higher percentage of biologically relevant interactions than direct fusion of BioID2 to CLTB. Thus, this system can be used to monitor expression and localization of BioID bait proteins and to identify protein–protein interactions.
Collapse
|
19
|
Charenton C, Gaudon-Plesse C, Back R, Ulryck N, Cosson L, Séraphin B, Graille M. Pby1 is a direct partner of the Dcp2 decapping enzyme. Nucleic Acids Res 2020; 48:6353-6366. [PMID: 32396195 PMCID: PMC7293026 DOI: 10.1093/nar/gkaa337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Most eukaryotic mRNAs harbor a characteristic 5′ m7GpppN cap that promotes pre-mRNA splicing, mRNA nucleocytoplasmic transport and translation while also protecting mRNAs from exonucleolytic attacks. mRNA caps are eliminated by Dcp2 during mRNA decay, allowing 5′-3′ exonucleases to degrade mRNA bodies. However, the Dcp2 decapping enzyme is poorly active on its own and requires binding to stable or transient protein partners to sever the cap of target mRNAs. Here, we analyse the role of one of these partners, the yeast Pby1 factor, which is known to co-localize into P-bodies together with decapping factors. We report that Pby1 uses its C-terminal domain to directly bind to the decapping enzyme. We solved the structure of this Pby1 domain alone and bound to the Dcp1–Dcp2–Edc3 decapping complex. Structure-based mutant analyses reveal that Pby1 binding to the decapping enzyme is required for its recruitment into P-bodies. Moreover, Pby1 binding to the decapping enzyme stimulates growth in conditions in which decapping activation is compromised. Our results point towards a direct connection of Pby1 with decapping and P-body formation, both stemming from its interaction with the Dcp1–Dcp2 holoenzyme.
Collapse
Affiliation(s)
- Clément Charenton
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Claudine Gaudon-Plesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Régis Back
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Loreline Cosson
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
20
|
Borbolis F, Rallis J, Kanatouris G, Kokla N, Karamalegkos A, Vasileiou C, Vakaloglou KM, Diallinas G, Stravopodis DJ, Zervas CG, Syntichaki P. mRNA decapping is an evolutionarily conserved modulator of neuroendocrine signaling that controls development and ageing. eLife 2020; 9:e53757. [PMID: 32366357 PMCID: PMC7200159 DOI: 10.7554/elife.53757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic 5'-3' mRNA decay plays important roles during development and in response to stress, regulating gene expression post-transcriptionally. In Caenorhabditis elegans, deficiency of DCAP-1/DCP1, the essential co-factor of the major cytoplasmic mRNA decapping enzyme, impacts normal development, stress survival and ageing. Here, we show that overexpression of dcap-1 in neurons of worms is sufficient to increase lifespan through the function of the insulin/IGF-like signaling and its effector DAF-16/FOXO transcription factor. Neuronal DCAP-1 affects basal levels of INS-7, an ageing-related insulin-like peptide, which acts in the intestine to determine lifespan. Short-lived dcap-1 mutants exhibit a neurosecretion-dependent upregulation of intestinal ins-7 transcription, and diminished nuclear localization of DAF-16/FOXO. Moreover, neuronal overexpression of DCP1 in Drosophila melanogaster confers longevity in adults, while neuronal DCP1 deficiency shortens lifespan and affects wing morphogenesis, cell non-autonomously. Our genetic analysis in two model-organisms suggests a critical and conserved function of DCAP-1/DCP1 in developmental events and lifespan modulation.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - John Rallis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - George Kanatouris
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Nikolitsa Kokla
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Antonis Karamalegkos
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Christina Vasileiou
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
- Department of Molecular Biology and Genetics, Democritus University of ThraceAlex/polisGreece
| | - Katerina M Vakaloglou
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
| | - George Diallinas
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Dimitrios J Stravopodis
- Department of Biology, School of Science, National and Kapodistrian University of AthensAthensGreece
| | - Christos G Zervas
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
| | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic ResearchAthensGreece
| |
Collapse
|
21
|
Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: Multitasking shuttling proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1557. [PMID: 31231973 DOI: 10.1002/wrna.1557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie, CIRI, Lyon, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie du Développement, Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Gagliardi D, Dziembowski A. 5' and 3' modifications controlling RNA degradation: from safeguards to executioners. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0160. [PMID: 30397097 DOI: 10.1098/rstb.2018.0160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
RNA degradation is a key process in the regulation of gene expression. In all organisms, RNA degradation participates in controlling coding and non-coding RNA levels in response to developmental and environmental cues. RNA degradation is also crucial for the elimination of defective RNAs. Those defective RNAs are mostly produced by 'mistakes' made by the RNA processing machinery during the maturation of functional transcripts from their precursors. The constant control of RNA quality prevents potential deleterious effects caused by the accumulation of aberrant non-coding transcripts or by the translation of defective messenger RNAs (mRNAs). Prokaryotic and eukaryotic organisms are also under the constant threat of attacks from pathogens, mostly viruses, and one common line of defence involves the ribonucleolytic digestion of the invader's RNA. Finally, mutations in components involved in RNA degradation are associated with numerous diseases in humans, and this together with the multiplicity of its roles illustrates the biological importance of RNA degradation. RNA degradation is mostly viewed as a default pathway: any functional RNA (including a successful pathogenic RNA) must be protected from the scavenging RNA degradation machinery. Yet, this protection must be temporary, and it will be overcome at one point because the ultimate fate of any cellular RNA is to be eliminated. This special issue focuses on modifications deposited at the 5' or the 3' extremities of RNA, and how these modifications control RNA stability or degradation.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|