1
|
Isdaner AJ, Levis NA, Ehrenreich IM, Pfennig DW. Genetic Variants Underlying Plasticity in Natural Populations of Spadefoot Toads: Environmental Assessment versus Phenotypic Response. Genes (Basel) 2024; 15:611. [PMID: 38790242 PMCID: PMC11121243 DOI: 10.3390/genes15050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity--resource polyphenism--in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve.
Collapse
Affiliation(s)
- Andrew J. Isdaner
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC 27599, USA; (A.J.I.); (N.A.L.)
| | - Nicholas A. Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC 27599, USA; (A.J.I.); (N.A.L.)
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ian M. Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - David W. Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC 27599, USA; (A.J.I.); (N.A.L.)
| |
Collapse
|
2
|
Ruskie EL, Zakas C. Assortative mating and mate-choice contributes to the maintenance of a developmental dimorphism in Streblospio benedicti. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:424-430. [PMID: 37158462 PMCID: PMC10525012 DOI: 10.1002/jez.b.23196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Assortative mating, where individuals non-randomly mate with respect to phenotype or genotype, can occur when preferences between potential mates have evolved. When such mate preferences occur in a population it can drive evolutionary and phenotypic divergence. But the extent to which assortative mating, mate preference, and development are evolutionarily linked remains unclear. Here we use Streblospio benedicti, a marine annelid with a rare developmental dimorphism, to investigate if mate-choice could contribute to developmental evolution. For S. benedicti two types of ecologically and phenotypically similar adults persist in natural populations, but they give rise to distinctly different offspring with alternative life-histories. This dimorphism persists despite the absence of post-zygotic reproductive barriers, where crosses between the developmental types can produce phenotypically intermediate offspring. How this life-history strategy evolved remains unknown, but assortative mating is a typical first step in evolutionary divergence. Here we investigate if female mate-choice is occurring in this species. We find that mate preferences could be contributing to the maintenance of alternative developmental and life-history strategies.
Collapse
Affiliation(s)
- Erika L. Ruskie
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina, 27607
| | - Christina Zakas
- North Carolina State University, Department of Biological Sciences, Raleigh, North Carolina, 27607
| |
Collapse
|
3
|
Abstract
AbstractClimate change is altering species' habitats, phenology, and behavior. Although sexual behaviors impact population persistence and fitness, climate change's effects on sexual signals are understudied. Climate change can directly alter temperature-dependent sexual signals, cause changes in body size or condition that affect signal production, or alter the selective landscape of sexual signals. We tested whether temperature-dependent mating calls of Mexican spadefoot toads (Spea multiplicata) had changed in concert with climate in the southwestern United States across 22 years. We document increasing air temperatures, decreasing rainfall, and changing seasonal patterns of temperature and rainfall in the spadefoots' habitat. Despite increasing air temperatures, spadefoots' ephemeral breeding ponds have been getting colder at most elevations, and male calls have been slowing as a result. However, temperature-standardized call characters have become faster, and male condition has increased, possibly due to changes in the selective environment. Thus, climate change might generate rapid, complex changes in sexual signals with important evolutionary consequences.
Collapse
|
4
|
Calabrese GM, Pfennig KS. Females alter their mate preferences depending on hybridization risk. Biol Lett 2022; 18:20220310. [PMID: 36382373 PMCID: PMC9667136 DOI: 10.1098/rsbl.2022.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/24/2022] [Indexed: 11/18/2023] Open
Abstract
Mating with another species is often maladaptive because it generally results in no or low-fitness offspring. When hybridization is sufficiently costly, individuals should avoid mating with heterospecifics even if it reduces their ability to mate with high-quality conspecifics that resemble heterospecifics. Here, we used spadefoot toads, Spea multiplicata, to evaluate whether females alter their preferences for conspecific male sexual signals (call rate) depending on heterospecific presence. When presented with conspecific signals against a background including both conspecific and heterospecific signals, females preferred male traits that were most dissimilar to heterospecifics-even though these signals are potentially associated with lower-quality mates. However, when these same females were presented with a background that included only conspecific signals, some females switched their preferences, choosing conspecific signals that were exaggerated and indicative of high-quality conspecific mates. Because only some females switched their preferences between these two chorus treatments, there was no population-level preference for exaggerated conspecific male signals in the absence of heterospecifics. These results show that hybridization risk can alter patterns of mate choice and, consequently, sexual selection on male signals. Moreover, they emphasize that the strength and expression of reproductive barriers between species (such as mate choice) can be context-dependent.
Collapse
Affiliation(s)
- Gina M. Calabrese
- Department of Biology, University of North Carolina, CB# 3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, CB# 3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
5
|
Calabrese GM, Pfennig KS. Female mate preferences do not predict male sexual signals across populations. Behav Ecol 2021. [DOI: 10.1093/beheco/arab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
New species can arise when female preferences and male sexual signals diverge across populations and thereby reduce mating between populations. Under this hypothesized mechanism for speciation, mate preferences and sexual signals should be correlated, but divergent, across populations. We evaluated this prediction using spadefoot toads (Spea multiplicata). We measured a sexually selected male signal (call rate) for which female preferences are known to vary across populations in response to the risk of hybridizing with another species. Contrary to expectation, we found no correlation between male call rate and female preferences across populations. We discuss possible mechanisms of this pattern, including the effect of gene flow from heterospecifics on male call rate. Our results suggest that, even when populations vary in mating traits, the independent evolution of female preferences and male sexual signals might impede reproductive isolation between populations.
Collapse
Affiliation(s)
- Gina M Calabrese
- Department of Biology, University of North Carolina , CB#3280, Chapel Hill, NC 27599-3280 , USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina , CB#3280, Chapel Hill, NC 27599-3280 , USA
| |
Collapse
|
6
|
Levis NA, Kelly PW, Harmon EA, Ehrenreich IM, McKay DJ, Pfennig DW. Transcriptomic bases of a polyphenism. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:482-495. [PMID: 34142757 DOI: 10.1002/jez.b.23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 11/06/2022]
Abstract
Polyphenism-in which multiple distinct phenotypes are produced from a single genotype owing to differing environmental conditions-is commonplace, but its molecular bases are poorly understood. Here, we examine the transcriptomic bases of a polyphenism in Mexican spadefoot toads (Spea multiplicata). Depending on their environment, their tadpoles develop into either a default "omnivore" morph or a novel "carnivore" morph. We compared patterns of gene expression among sibships that exhibited high versus low production of carnivores when reared in conditions that induce the carnivore morph versus those that do not. We found that production of the novel carnivore morph actually involved changes in fewer genes than did the maintenance of the default omnivore morph in the inducing environment. However, only body samples showed this pattern; head samples showed the opposite pattern. We also found that changes to lipid metabolism (especially cholesterol biosynthesis) and peroxisome contents and function might be crucial for establishing and maintaining differences between the morphs. Thus, our findings suggest that carnivore phenotype might have originally evolved following the breakdown of robustness mechanisms that maintain the default omnivore phenotype, and that the carnivore morph is developmentally regulated by lipid metabolism and peroxisomal form, function, and/or signaling. This study also serves as a springboard for further exploration into the nature and causes of plasticity in an emerging model system.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.,Current affiliation: Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Patrick W Kelly
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily A Harmon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern, Los Angeles, California, USA
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Calabrese GM, Pfennig KS. Reinforcement and the Proliferation of Species. J Hered 2021; 111:138-146. [PMID: 31850499 DOI: 10.1093/jhered/esz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/23/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptive radiations are characterized by the rapid proliferation of species. Explaining how adaptive radiations occur therefore depends, in part, on identifying how populations become reproductively isolated-and ultimately become different species. Such reproductive isolation could arise when populations adapting to novel niches experience selection to avoid interbreeding and, consequently, evolve mating traits that minimize such hybridization via the process of reinforcement. Here, we highlight that a downstream consequence of reinforcement is divergence of conspecific populations, and this further divergence can instigate species proliferation. Moreover, we evaluate when reinforcement will-and will not-promote species proliferation. Finally, we discuss empirical approaches to test what role, if any, reinforcement plays in species proliferation and, consequently, in adaptive radiation. To date, reinforcement's downstream effects on species proliferation remain largely unknown and speculative. Because the ecological and evolutionary contexts in which adaptive radiations occur are conducive to reinforcement and its downstream consequences, adaptive radiations provide an ideal framework in which to evaluate reinforcement's role in diversification.
Collapse
Affiliation(s)
- Gina M Calabrese
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
8
|
Kelly PW, Pfennig DW, Pfennig KS. Adaptive Plasticity as a Fitness Benefit of Mate Choice. Trends Ecol Evol 2021; 36:294-307. [PMID: 33546877 DOI: 10.1016/j.tree.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity and sexual selection can each promote adaptation in variable environments, but their combined influence on adaptive evolution is not well understood. We propose that sexual selection can facilitate adaptation in variable environments when individuals prefer mates that produce adaptively plastic offspring. We develop this hypothesis and review existing studies showing that diverse groups display both sexual selection and plasticity in nonsexual traits. Thus, plasticity could be a widespread but unappreciated benefit of mate choice. We describe methods and opportunities to test this hypothesis and describe how sexual selection might foster the evolution of phenotypic plasticity. Understanding this interplay between sexual selection and phenotypic plasticity might help predict which species will adapt to a rapidly changing world.
Collapse
Affiliation(s)
- Patrick W Kelly
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - David W Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Karin S Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
9
|
Levis NA, Fuller CG, Pfennig DW. An experimental investigation of how intraspecific competition and phenotypic plasticity can promote the evolution of novel, complex phenotypes. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Intraspecific competition has long been considered a key driver of evolutionary diversification, but whether it can also promote evolutionary innovation is less clear. Here we examined the interplay between competition and phenotypic plasticity in fuelling the origins of a novel, complex phenotype – a distinctive carnivore morph found in spadefoot toad tadpoles (genus Spea) that specializes on fairy shrimp. We specifically sought to explore the possible origins of this phenotype by providing shrimp to Scaphiopus holbrookii tadpoles (the sister genus to Spea that does not produce carnivores) while subjecting them to competition for their standard diet of detritus. Previous research had shown that this species will eat shrimp when detritus is limited, and that these shrimp-fed individuals produce features that are redolent of a rudimentary Spea carnivore. In this study, we found that: (1) behavioural and morphological plasticity enabled some individuals to expand their diet to include shrimp; (2) there was heritable variation in this plasticity; and (3) individuals received a growth and development benefit by eating shrimp. Thus, novel resource use can arise via plasticity as an adaptive response to intraspecific competition. More generally, our results show how competition and plasticity may interact to pave the way for the evolution of complex, novel phenotypes, such as the distinctive carnivore morph in present-day Spea.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - Carly G Fuller
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Carbonell JA, Stoks R. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions. Ecology 2020; 101:e03134. [PMID: 32691873 DOI: 10.1002/ecy.3134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Species' range edges are expanding to both warmer and cooler regions. Yet, no studies directly compared the changes in range-limiting traits within the same species during both types of range expansions. To increase our mechanistic understanding of range expansions, it is crucial to disentangle the contributions of plastic and genetic changes in these traits. The aim of this study was to test for plastic and evolutionary changes in heat tolerance, life history, and behavior, and compare these during range expansions toward warmer and cooler regions. Using laboratory experiments we reconstructed the thermal performance curves (TPCurves) of larval life history (survival, growth, and development rates) and larval heat tolerance (CTmax) across two recent range expansions from the core populations in southern France toward a warmer (southeastern Spain) and a cooler (northwestern Spain) region in Europe by the damselfly Ischnura elegans. First-generation larvae from field-collected mothers were reared across a range of temperatures (16°-28°C) in incubators. The range expansion to the warmer region was associated with the evolution of a greater ability to cope with high temperatures (increased mean and thermal plasticity of CTmax), faster development, and, in part, a faster growth, indicating a higher time constraints caused by a shorter time frame available for larval development associated with a transition to a greater voltinism. Our results thereby support the emerging pattern that plasticity in heat tolerance alone is inadequate to adapt to new thermal regimes. The range expansion to the cooler region was associated with faster growth indicating countergradient variation without a change in CTmax. The evolution of a faster growth rate during both range expansions could be explained by a greater digestive efficiency rather than an increased food intake. Our results highlight that range expansions to warmer and cooler regions can result in similar evolutionary changes in the TPCurves for life history, and no opposite changes in heat tolerance.
Collapse
Affiliation(s)
- José Antonio Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Avenida Américo Vespucio 26, Isla de la Cartuja, Seville, 41042, Spain
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| |
Collapse
|
11
|
Chen C, Pfennig KS. Female toads engaging in adaptive hybridization prefer high-quality heterospecifics as mates. Science 2020; 367:1377-1379. [DOI: 10.1126/science.aaz5109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/28/2020] [Indexed: 01/05/2023]
Abstract
Hybridization—interbreeding between species—is generally thought to occur randomly between members of two species. Contrary to expectation, female plains spadefoot toads (Spea bombifrons) can increase their evolutionary fitness by preferentially mating with high-quality males of another species, the Mexican spadefoot toad (Spea multiplicata). Aspects of Mexican spadefoot males’ mating calls predict their hybrid offspring’s fitness, and plains spadefoot females prefer Mexican spadefoot males on the basis of these attributes, but only in populations and ecological conditions where hybridization is adaptive. By selecting fitness-enhancing mates of another species, females increase hybridization’s benefits and exert sexual selection across species. Nonrandom mating between species can thereby increase the potential for adaptive gene flow between species so that adaptive introgression is not simply happenstance.
Collapse
Affiliation(s)
- Catherine Chen
- Department of Biology, Campus Box 3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, Campus Box 3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180174. [PMID: 30966962 PMCID: PMC6365870 DOI: 10.1098/rstb.2018.0174] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental change. The process of adaptation to novel environmental conditions can occur via two mechanisms: (1) the expression of phenotypic plasticity (the ability of one genotype to express varying phenotypes when exposed to different environmental conditions), and (2) evolution via selection for particular phenotypes, resulting in the modification of genetic variation in the population. Plasticity, because it acts at the level of the individual, is often hailed as a rapid-response mechanism that will enable organisms to adapt and survive in our rapidly changing world. But plasticity can also retard adaptation by shifting the distribution of phenotypes in the population, shielding it from natural selection. In addition to which, not all plastic responses are adaptive-now well-documented in cases of ecological traps. In this theme issue, we aim to present a considered view of plasticity and the role it could play in facilitating or hindering adaption to environmental change. This introduction provides a re-examination of our current understanding of the role of phenotypic plasticity in adaptation and sets the theme issue's contributions in their broader context. Four key themes emerge: the need to measure plasticity across both space and time; the importance of the past in predicting the future; the importance of the link between plasticity and sexual selection; and the need to understand more about the nature of selection on plasticity itself. We conclude by advocating the need for cross-disciplinary collaborations to settle the question of whether plasticity will promote or retard species' rates of adaptation to ever-more stressful environmental conditions. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Rebecca J. Fox
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| | - Celia Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan D. Gaitán-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
13
|
Levis NA, Pfennig DW. Plasticity-led evolution: evaluating the key prediction of frequency-dependent adaptation. Proc Biol Sci 2019; 286:20182754. [PMID: 30963848 PMCID: PMC6408876 DOI: 10.1098/rspb.2018.2754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/20/2023] Open
Abstract
Plasticity-led evolution occurs when a change in the environment triggers a change in phenotype via phenotypic plasticity, and this pre-existing plasticity is subsequently refined by selection into an adaptive phenotype. A critical, but largely untested prediction of plasticity-led evolution (and evolution by natural selection generally) is that the rate and magnitude of evolutionary change should be positively associated with a phenotype's frequency of expression in a population. Essentially, the more often a phenotype is expressed and exposed to selection, the greater its opportunity for adaptive refinement. We tested this prediction by competing against each other spadefoot toad tadpoles from different natural populations that vary in how frequently they express a novel, environmentally induced carnivore ecomorph. As expected, laboratory-reared tadpoles whose parents were derived from populations that express the carnivore ecomorph more frequently were superior competitors for the resource for which this ecomorph is specialized-fairy shrimp. These tadpoles were better at using this resource both because they were more efficient at capturing and consuming shrimp and because they produced more exaggerated carnivore traits. Moreover, they exhibited these more carnivore-like features even without experiencing the inducing cue, suggesting that this ecomorph has undergone an extreme form of plasticity-led evolution-genetic assimilation. Thus, our findings provide evidence that the frequency of trait expression drives the magnitude of adaptive refinement, thereby validating a key prediction of plasticity-led evolution specifically and adaptive evolution generally.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, University of North Carolina, CB no. 3280, Chapel Hill, NC 27599, USA
| | | |
Collapse
|