1
|
Fu D, Huang J, Wu X, Li Y, Zhang Y, Chen L, Liu Z, He Y, Zhou Y, Yang L, Hu Z, Miao Y. Shape-fixing hydrogel promotes scarless healing of wounds under tension. Acta Biomater 2024; 183:173-190. [PMID: 38821145 DOI: 10.1016/j.actbio.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
The healing of a wound under tension (hereafter, "tension wound") often coincides with the development of hypertrophic scars in clinical settings. Currently, compress bandages offer a potential alternative for the healing of tension wounds; however, their application in surgery is limited due to their prefabricated patch form. To overcome this, a tension-shielding hydrogel system was designed using photocurable catechol-grafted hyaluronic acid and tannic-acid silver nanoparticles (hereafter, "HTA system"). The hydrogel exhibited tension-shielding capacity, reducing wound tension via shape-fixation and ultimately reducing scar formation. The HTA hydrogel exhibited superior photothermal antibacterial efficacy, self-healing properties, and effective dissipation of energy, thereby promoting tissue regeneration. The hydrogel significantly inhibited the mechanotransduction pathway, thus preventing Engrailed-1 activation and reducing the fibrotic response. The HTA hydrogel system, therefore, provides a treatment strategy for tension wounds, burn wounds and other wounds that are prone to form hypertrophic scars via creating a tension-free local environment. STATEMENT OF SIGNIFICANCE: In our study, we presented a wound-dressing hydrogel system (HTA) that exhibit shape-fixing capacity in tension wound model. Here, we designed and modified a tension regulator, applied it to mice, and furthermore, established a tension wound model in mice with adjustable tension. Outcomes showed that the HTA hydrogel system can effectively form a shape-fixed environment on tension wounds and dynamic wounds, thus promoting scarless healing. Additionally, HTA performs injectability, rapid crosslinking, biocompatibility, wet adhesion, hemostasis and photothermal antibacterial properties. We believe this research has various potential clinical applications, including scarless-healing in tension wounds, treatment of acute bleeding, treatment of infected wounds, and even internal organ repair.
Collapse
Affiliation(s)
- Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoqi Wu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yufan Zhang
- Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye He
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Zhou
- Zhejiang Provincial People's Hospital, Hangzhou 314408, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Smith AM, Flammang P. Analysis of the adhesive secreting cells of Arion subfuscus: insights into the role of microgels in a tough, fast-setting hydrogel glue. SOFT MATTER 2024; 20:4669-4680. [PMID: 38563822 DOI: 10.1039/d4sm00071d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The slug Arion subfuscus produces a tough, highly adhesive defensive secretion. This secretion is a flexible hydrogel that is toughened by a double network mechanism. While synthetic double network gels typically require extensive time to prepare, this slug creates a tough gel in seconds. To gain insight into how the glue forms a double-network hydrogel so rapidly, the secretory apparatus of this slug was analyzed. The goal was to determine how the major components of the glue were distributed and mixed. Most of the glue comes from two types of large unicellular glands; one secretes polyanionic polysaccharides in small, membrane-bound packets, the other secretes proteins that appear to form a cross-linked network. The latter gland shows distinct regions where cross-linking appears to be occurring. These regions are darker, more homogeneous and appear more solid than the rest of the secretory material. The enzyme catalase is highly abundant in these regions, as are basic proteins. These results suggest that a rapid oxidation event occurs in this protein-containing gland, triggering cross-linking before the glue is released. The cross-linked microgels would then join together after secretion to form a granular hydrogel. The polysaccharide-filled packets would be mixed and interspersed among these microgels and may contribute to joining them together. This is an unexpected and highly effective way to form a tough gel rapidly.
Collapse
Affiliation(s)
- Andrew M Smith
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA.
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| |
Collapse
|
3
|
Kwon Y, Singh S, Rodriguez D, Chau AL, Pitenis AA, De Tomaso AW, Valentine MT. Mechanical resilience of the sessile tunicate Botryllus schlosseri. J Exp Biol 2023; 226:jeb245124. [PMID: 37929758 PMCID: PMC10753489 DOI: 10.1242/jeb.245124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
We demonstrate that the sessile tunicate Botryllus schlosseri is remarkably resilient to applied loads by attaching the animals to an extensile substrate subjected to quasistatic equiradial loads. Animals can withstand radial extension of the substrate to strain values as high as 20% before they spontaneously detach. In the small to moderate strain regime, we found no relationship between the dynamic size of the external vascular bed and the magnitude of applied stretch, despite known force sensitivities of the vascular tissue at the cellular level. We attribute this resilience to the presence and mechanical properties of the tunic, the cellulose-enriched gel-like substance that encases the animal bodies and surrounding vasculature.
Collapse
Affiliation(s)
- Younghoon Kwon
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93117, USA
| | - Shambhavi Singh
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93117, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93117, USA
| | - Allison L. Chau
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93117, USA
| | - Angela A. Pitenis
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93117, USA
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93117, USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93117, USA
| |
Collapse
|
4
|
Wu M, Mao S, Liu X, Liu Y, Cong P, Lv J, Tian H, Zhao Y. Strong tissue adhesive polyelectrolyte complex powders based on low molecular weight chitosan for acute hemorrhage control. Int J Biol Macromol 2023; 248:125755. [PMID: 37429337 DOI: 10.1016/j.ijbiomac.2023.125755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Self-gelling and bioadhesive powders offered promising effective hemostats to suit irregularly shaped, complex and non-compressible wounds for clinical applications. In the current study, chitosan based polyelectrolyte complex coacervate were simply prepared by mixing high concentrations (10 %) of low molecular weight chitosan (CS) and polyacrylic acid (PAA) solutions. Obtained by lyophilization, the physical cross-linked polyelectrolyte complex powders would form a gel within 5 s upon hydration, which demonstrated excellent mechanical properties, significant antibacterial activities, strong and lasting adhesion on wet tissues in physiological environment. In vitro blood clotting assays showed that the CS/PAA powders could remarkably aggregate blood cells and accelerate blood clotting process. As studied by diverse hemorrhage models, including rat tail, liver and heart injuries and dog incision, CS/PAA powders significantly facilitated the decrease of blood loss as well as hemostatic time by creating robust physical barriers and promoting blood clot formation on the bleeding sites. These outstanding properties in terms of easy preparation, rapid self-gelling, strong wet adhesion, effective hemostasis and shape-adaptability endowed CS/PAA polyelectrolyte complex powders with great potential in managing acute hemorrhage of non-compressible trauma.
Collapse
Affiliation(s)
- Mi Wu
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Shun Mao
- Shenyang Medical College, Shenyang 110034, China
| | - Xu Liu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yunen Liu
- Shenyang Medical College, Shenyang 110034, China.
| | - Peifang Cong
- Shenyang Medical College, Shenyang 110034, China
| | - Jianhua Lv
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China.
| | - Yan Zhao
- Jihua Laboratory, Foshan, Guangdong 528200, China.
| |
Collapse
|
5
|
Deng T, Gao D, Song X, Zhou Z, Zhou L, Tao M, Jiang Z, Yang L, Luo L, Zhou A, Hu L, Qin H, Wu M. A natural biological adhesive from snail mucus for wound repair. Nat Commun 2023; 14:396. [PMID: 36693849 PMCID: PMC9873654 DOI: 10.1038/s41467-023-35907-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
The discovery of natural adhesion phenomena and mechanisms has advanced the development of a new generation of tissue adhesives in recent decades. In this study, we develop a natural biological adhesive from snail mucus gel, which consists a network of positively charged protein and polyanionic glycosaminoglycan. The malleable bulk adhesive matrix can adhere to wet tissue through multiple interactions. The biomaterial exhibits excellent haemostatic activity, biocompatibility and biodegradability, and it is effective in accelerating the healing of full-thickness skin wounds in both normal and diabetic male rats. Further mechanistic study shows it effectively promotes the polarization of macrophages towards the anti-inflammatory phenotype, alleviates inflammation in chronic wounds, and significantly improves epithelial regeneration and angiogenesis. Its abundant heparin-like glycosaminoglycan component is the main active ingredient. These findings provide theoretical and material insights into bio-inspired tissue adhesives and bioengineered scaffold designs.
Collapse
Affiliation(s)
- Tuo Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongxiu Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Xuemei Song
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhipeng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Lixiao Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Maixian Tao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zexiu Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Ankun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Lin Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Hongbo Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, 650031, Kunming, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Barrett-Catton E, Pedersen K, Mobed-Miremadi M, Asuri P. Modeling the Additive Effects of Nanoparticles and Polymers on Hydrogel Mechanical Properties Using Multifactor Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4461. [PMID: 36558313 PMCID: PMC9785977 DOI: 10.3390/nano12244461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Interpenetrating networks (IPN)s have been conceived as a biomimetic tool to tune hydrogel mechanical properties to the desired target formulations. In this study, the rheological behavior of acrylamide (AAm) [2.5-10%] hydrogels crosslinked with N,N'-methylenebis(acrylamide) (Bis) [0.0625-0.25%] was characterized in terms of the saturation modulus affected by the interaction of silica nanoparticle (SiNP) nanofillers [0-5%] and dextran [0-2%] at a frequency of 1 Hz and strain rate of 1% after a gelation period of 90 min. For single-network hydrogels, a prominent transition was observed at 0.125% Bis for 2.5% AAm and 0.25% Bis for 5% AAm across the SiNP concentrations and was validated by retrospective 3-level factorial design models, as characterized by deviation from linearity in the saturation region (R2 = 0.86). IPN hydrogels resulting from the addition of dextran to the single network in the pre-saturation region, as outlined by the strong goodness of fit (R2= 0.99), exhibited a correlated increase in the elastic (G') and viscous moduli (G"). While increasing the dextran concentrations [0-2%] and MW [100 kDa and 500 kDa] regulated the increase in G', saturation in G" or the loss tangent (tan(δ)) was not recorded within the observed operating windows. Results of multifactor analysis conducted on Han plots in terms of the elastic gains indicate that amongst the factors modulating the viscoelasticity of the IPN hydrogels, dextran concentration is the most important (RDex = 35.3 dB), followed by nanoparticle concentration (RSiNP = 7.7 dB) and dextran molecular weight (RMW = 2.9 dB). The results demonstrate how the Han plot may be systematically used to quantify the main effects of intensive thermodynamic properties on rheological phase transition in interpenetrating networks where traditional multifactor analyses cannot resolve statistical significance.
Collapse
|
7
|
Christoforo C, Fleming B, Zeitler M, Haws H, Smith AM. Metal-binding proteins and cross-linking in the defensive glue of the slug Arion subfuscus. J R Soc Interface 2022; 19:20220611. [PMID: 36415975 PMCID: PMC9682298 DOI: 10.1098/rsif.2022.0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
The role of metals in forming the primary cross-links in slug glue was investigated. Several metal-binding proteins were identified in the defensive glue produced by the slug Arion subfuscus. Notably, the C-lectins that are unique to the glue are iron-binding proteins. This is unusual for C-lectins. Dissociating these proteins from iron does not affect the glue's stiffness. Similarly, several proteins that can bind to zinc were identified, but dissociating the proteins from zinc did not weaken the glue. These results suggest that metal coordination is not involved in the primary cross-links of this hydrogel glue. The stable cross-links that provide stiffness are more likely to be created by a catalytic event involving protein oxidation. Cross-linking was unexpectedly difficult to prevent. Collecting the glue into a large volume of ice-cold buffer with reagents aimed at inhibiting oxidative cross-linking caused a slight loss of cross-linking, as demonstrated by the appearance of uncross-linked proteins in native gel electrophoresis. Notable among these was a protein that is normally heavily oxidized (asmp165). Nevertheless, this effect was not large, suggesting that the primary cross-links form before secretion.
Collapse
Affiliation(s)
| | - Beth Fleming
- Department of Biology, Ithaca College, Ithaca, NY, USA
| | | | - Haley Haws
- Department of Biology, Ithaca College, Ithaca, NY, USA
| | | |
Collapse
|
8
|
Mussel adhesion: A fundamental perspective on factors governing strong underwater adhesion. Biointerphases 2022; 17:058501. [DOI: 10.1116/6.0002051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein-based underwater adhesives of marine organisms exhibit extraordinary binding strength in high salinity based on utilizing a variety of molecular interaction mechanisms. These include acid-base interactions, bidentate bindings or complex hydrogen bonding interactions, and electrochemical manipulation of interfacial bonding. In this Perspective, we briefly review recent progress in the field, and we discuss how interfacial electrochemistry can vary interfacial forces by concerted tuning of surface charging, hydration forces, and tuning of the interfacial ion concentration. We further discuss open questions, controversial findings, and new paths into understanding and utilizing redox-proteins and derived polymers for enhancing underwater adhesion in a complex salt environment.
Collapse
|
9
|
Long S, Xie C, Lu X. Natural polymer‐based adhesive hydrogel for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Siyu Long
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| |
Collapse
|
10
|
Mercedes B, Stellwagen SD. The Ties that Stick: Challenges and future promise in the field of bioadhesives. Integr Comp Biol 2021; 61:1406-1410. [PMID: 34114617 DOI: 10.1093/icb/icab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 11/14/2022] Open
Abstract
Bioadhesives are wet or dry polymeric compounds that rely upon physical and chemical properties to generate characteristic sticky forces. The past decade has seen a rapidly evolving field of research around the functions, genetics, biochemistry, and mimetics of bioadhesives, but challenges unique to this research area continue to arise. We polled the presenters of SICB Symposium #8 to describe the "Ties that Stick:" challenges and exciting prospects that most resonated with their research pursuits. Themes that emerged from the poll included difficulties working with adhesive-producing organisms, field inherent knowledge gaps in theoretical modeling, molecular interactions, technology, and the interdisciplinary rigor of the bioadhesives field. We address each challenge with a discussion of the opportunities and applications presented by bioadhesives research.
Collapse
Affiliation(s)
- Burns Mercedes
- University of Maryland, Baltimore County, Baltimore, MD 21250 USA
| | | |
Collapse
|
11
|
Smith AM, Huynh P, Griffin S, Baughn M, Monka P. Strong, non-specific adhesion using C-lectin heterotrimers in a molluscan defensive secretion. Integr Comp Biol 2021; 61:1440-1449. [PMID: 34048555 DOI: 10.1093/icb/icab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The defensive mucus produced by the slug Arion subfuscus is tough and remarkably sticky. It spreads rapidly and adheres strongly to a wide range of surfaces. The adhesion is equally strong on wettable (glass) and non-wettable (plastic) surfaces. The adhesion appears to depend on a group of proteins that adsorb equally well to a wide range of different natural and artificial surfaces. Prominent among these proteins were those that distinguish the adhesive secretion from the non-adhesive mucus. The adhesive proteins were not washed off by non-ionic detergent, nor was the adhesion of the glue as a whole affected by this treatment. In contrast, high salt concentrations washed the most abundant adhesive proteins off the surfaces, and correspondingly weakened the glue's attachment. The most abundant of the adhesive proteins were C-lectins, which appear to form heterotrimers. These and other lectin-like proteins in slug glue have a high proportion of aromatic amino acids at conserved locations, and are relatively small and often basic. The aromatic and cationic side chains may provide a powerful combination promoting and maintaining surface adhesion.
Collapse
Affiliation(s)
- A M Smith
- Ithaca College, Department of Biology, Ithaca, NY
| | - P Huynh
- Ithaca College, Department of Biology, Ithaca, NY
| | - S Griffin
- Ithaca College, Department of Biology, Ithaca, NY
| | - M Baughn
- Ithaca College, Department of Biology, Ithaca, NY
| | - P Monka
- Ithaca College, Department of Biology, Ithaca, NY
| |
Collapse
|
12
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
13
|
Aldred N. Transdisciplinary approaches to the study of adhesion and adhesives in biological systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190191. [PMID: 31495317 DOI: 10.1098/rstb.2019.0191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|