1
|
Stieglitz J. Contemporary small-scale subsistence populations offer unique insights into human musculoskeletal health and aging. SCIENCE ADVANCES 2024; 10:eadq1039. [PMID: 39514654 DOI: 10.1126/sciadv.adq1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Human foragers avoid noncommunicable diseases that are leading causes of mortality, partly because physically active lifestyles promote healthy aging. High activity levels also promote tissue damage accumulation from wear-and-tear, increase risk of injury and disability which compromise productivity, and reduce energetic investments in somatic maintenance given constrained energy expenditure. Constraints intensify when nutrient supply is limited and surplus energy is directed toward pathogen defense and reproduction, as occurred throughout hominin evolution. This paper reviews evidence linking exposomes to musculoskeletal health in subsistence populations, focusing on effects of physical activity, pathogens, diet, and reproduction. Chronic musculoskeletal conditions are common for humans and possibly prehistoric hominins but rarer in quadrupedal apes. We propose that transition to bipedalism ~6 to 8 million years ago constituted an early "mismatch scenario," increasing hominin susceptibility to musculoskeletal conditions vis-à-vis quadrupedal apes due to changes in mechanical loading environments. Mismatched musculoskeletal traits were not targets of selection because of trade-offs favoring bipedal extractive foraging and higher fertility.
Collapse
Affiliation(s)
- Jonathan Stieglitz
- Department of Social and Behavioral Sciences, Toulouse School of Economics, Institute for Advanced Study in Toulouse, Université Toulouse Capitole, Toulouse, France
| |
Collapse
|
2
|
Duport A, Morel P, Léonard G, Devanne H. The influence of pain and kinesiophobia on motor control of the upper limb: how pointing task paradigms can point to new avenues of understanding. Pain 2024; 165:2044-2054. [PMID: 38501987 DOI: 10.1097/j.pain.0000000000003213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
ABSTRACT People experiencing kinesiophobia are more likely to develop persistent disabilities and chronic pain. However, the impact of kinesiophobia on the motor system remains poorly understood. We investigated whether kinesiophobia could modulate shoulder pain-induced changes in (1) kinematic parameters and muscle activation during functional movement and (2) corticospinal excitability. Thirty healthy, pain-free subjects took part in the study. Shoulder, elbow, and finger kinematics, as well as electromyographic activity of the upper trapezius and anterior deltoid muscles, were recorded while subjects performed a pointing task before and during pain induced by capsaicin at the shoulder. Anterior deltoid cortical changes in excitability were assessed through the slope of transcranial magnetic stimulation input-output curves obtained before and during pain. Results revealed that pain reduced shoulder electromyographic activity and had a variable effect on finger kinematics, with individuals with higher kinesiophobia showing greater reduction in finger target traveled distance. Kinesiophobia scores were also correlated with the changes in deltoid corticospinal excitability, suggesting that the latter can influence motor activity as soon as the motor signal emerges. Taken together, these results suggest that pain and kinesiophobia interact with motor control adaptation.
Collapse
Affiliation(s)
- Arnaud Duport
- University Littoral Côte d'Opale, University Artois, University Lille, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Calais, France
- Research Centre on Aging, Sherbrooke, QC, Canada
- University of Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre Morel
- University Littoral Côte d'Opale, University Artois, University Lille, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Calais, France
| | - Guillaume Léonard
- Research Centre on Aging, Sherbrooke, QC, Canada
- University of Sherbrooke, Sherbrooke, QC, Canada
| | - Hervé Devanne
- University Littoral Côte d'Opale, University Artois, University Lille, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Calais, France
| |
Collapse
|
3
|
Rocha CA, Félix LM, Monteiro SM, Venâncio C. Antinociceptive Analysis of Natural Monoterpenes Eugenol, Menthol, Carvacrol and Thymol in a Zebrafish Larval Model. Pharmaceuticals (Basel) 2024; 17:457. [PMID: 38675417 PMCID: PMC11054028 DOI: 10.3390/ph17040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In the last decade, a considerable number of studies have broadened our knowledge of the nociceptive mechanisms of pain, a global health problem in both humans and animals. The use of herbal compounds such as eugenol, menthol, thymol, and carvacrol as analgesic agents has accompanied the growing interest in this area, offering a possible solution for this complex problem. Here, we aimed to explore how these natural substances-at three different concentrations (2, 5 and 10 mg/L)-affect the pain responses in zebrafish (Danio rerio) larvae exposed to 0.05% acetic acid (AA) for 1 min. By analysing the activity of acetylcholinesterase (AChE), 5'-ectonucleotidase and NTPDases, as well as aversion and exploratory behaviours, it was observed that that although all substances were effective in counteracting the pain stimulus, the concentration range within which they do so might be very limited. Eugenol, despite its acknowledged properties in fish anaesthesia, failed to alleviate the pain stimulus at low concentrations. Contrastingly, menthol exhibited the most promising results at the lowest concentrations tested. Overall, it is concluded that menthol might be a good analgesic for this species, qualifying it as a substance of interest for prospective studies.
Collapse
Affiliation(s)
- Cláudia Alexandra Rocha
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.A.R.); (S.M.M.)
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra Mariza Monteiro
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.A.R.); (S.M.M.)
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
de C Williams AC. Pain: Behavioural expression and response in an evolutionary framework. Evol Med Public Health 2023; 11:429-437. [PMID: 38022798 PMCID: PMC10656790 DOI: 10.1093/emph/eoad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
An evolutionary perspective offers insights into the major public health problem of chronic (persistent) pain; behaviours associated with it perpetuate both pain and disability. Pain is motivating, and pain-related behaviours promote recovery by immediate active or passive defence; subsequent protection of wounds; suppression of competing responses; energy conservation; vigilance to threat; and learned avoidance of associated cues. When these persist beyond healing, as in chronic pain, they are disabling. In mammals, facial and bodily expression of pain is visible and identifiable by others, while social context, including conspecifics' responses, modulate pain. Studies of responses to pain emphasize onlooker empathy, but people with chronic pain report feeling disbelieved and stigmatized. Observers frequently discount others' pain, best understood in terms of cheater detection-alertness to free riders that underpins the capacity for prosocial behaviours. These dynamics occur both in everyday life and in clinical encounters, providing an account of the adaptiveness of pain-related behaviours.
Collapse
Affiliation(s)
- Amanda C de C Williams
- Research Department of Clinical, Educational & Health Psychology, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
6
|
Eccleston C, Begley E, Birkinshaw H, Choy E, Crombez G, Fisher E, Gibby A, Gooberman-Hill R, Grieve S, Guest A, Jordan A, Lilywhite A, Macfarlane GJ, McCabe C, McBeth J, Pickering AE, Pincus T, Sallis HM, Stone S, Van der Windt D, Vitali D, Wainwright E, Wilkinson C, de C Williams AC, Zeyen A, Keogh E. The establishment, maintenance, and adaptation of high- and low-impact chronic pain: a framework for biopsychosocial pain research. Pain 2023; 164:2143-2147. [PMID: 37310436 PMCID: PMC10502876 DOI: 10.1097/j.pain.0000000000002951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Christopher Eccleston
- Centre for Pain Research, University of Bath, Bath, United Kingdom
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Department of Psychology, The University of Helsinki, Helsinki, Finland
| | - Emma Begley
- School of Psychology, Aston University, Birmingham, United Kingdom
| | - Hollie Birkinshaw
- School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Ernest Choy
- Section of Rheumatology, Cardiff University, Cardiff, United Kingdom
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Emma Fisher
- Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Anna Gibby
- Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Rachael Gooberman-Hill
- Population Health Science Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sharon Grieve
- School of Health and Social Wellbeing, University of the West of England, Bristol, United Kingdom
| | - Amber Guest
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), University of Aberdeen, Aberdeen, United Kingdom
| | - Abbie Jordan
- Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Amanda Lilywhite
- Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Gary J. Macfarlane
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), University of Aberdeen, Aberdeen, United Kingdom
| | - Candida McCabe
- School of Health and Social Wellbeing, University of the West of England, Bristol, United Kingdom
| | - John McBeth
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Anthony E. Pickering
- Anaesthesia, Pain, and Critical Care Research, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Tamar Pincus
- School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Hannah M. Sallis
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha Stone
- Population Health Science Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Danielle Van der Windt
- Centre for Primary Care Versus Arthritis, School of Medicine, Keele University, Keele, United Kingdom
| | - Diego Vitali
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, United Kingdom
| | - Elaine Wainwright
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), University of Aberdeen, Aberdeen, United Kingdom
| | - Colin Wilkinson
- Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Amanda C. de C Williams
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, United Kingdom
| | - Anica Zeyen
- Department of Strategy, International Business, and Entrepreneurship, School of Business and Management, Royal Holloway University of London, London, United Kingdom
- Department of Psychology, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa
| | - Edmund Keogh
- Centre for Pain Research, University of Bath, Bath, United Kingdom
| |
Collapse
|
7
|
Lopez-Soriano M, Merenda VR, Anderson S, Trindade PHE, Leidig MS, Messenger K, Ferreira JB, Pairis-Garcia MD. Efficacy of inguinal buffered lidocaine and intranasal flunixin meglumine on mitigating physiological and behavioral responses to pain in castrated piglets. FRONTIERS IN PAIN RESEARCH 2023; 4:1156873. [PMID: 37346473 PMCID: PMC10279844 DOI: 10.3389/fpain.2023.1156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Managing castration pain on US sow farms is hindered by the lack of Food and Drug Administration (FDA) approved products for mitigating pain. Previous work assessing flunixin meglumine (FM) efficacy in mitigating castration pain has shown the drug to be effective in pigs, meanwhile, results from previous work evaluating lidocaine efficacy are contradictory. Therefore, the objectives of this study were to determine the efficacy of inguinal buffered lidocaine (BL) and FM in mitigating castration pain in piglets. This study was divided into Part I (physiological response) and Part II (behavioral response). For part I piglets were randomly assigned to the following treatments: T1: (C) Castration plus physiological saline; T2: (S) Sham plus physiological saline; T3: (CL) Castration plus BL; T4: (SL) Sham plus BL; T5: (CF) Castration plus FM; T6: (SF) Sham plus FM; T7: (CLF) Castration plus BL and FM; T8: (SLF) Sham plus BL and FM. Blood was collected 24 h prior to castration, 1 h, and 24 h post castration for cortisol quantification. For Part II another cohort of piglets was enrolled and randomly assign to the following treatments: T1: (C) Castration plus physiological saline and T7: (CLF) Castration plus BL and FM. Behavior scoring was obtained in real-time by observing each piglet for 4-min continuously using Unesp-Botucatu pig acute pain scale (UPAPS) at the following timepoints: 1 h before castration (-1 h), immediately post-castration (0 h), and 3 h post-castration (+3 h). Average cortisol concentrations did not differ at -24 h (P > 0.05) or at 24 h post-castration (P > 0.05) between treatments. At 1 h post-castration, castrated piglets (C and CL) demonstrated greater cortisol concentrations (P < 0.05). Castrated piglets in the CF and CLF group had lower cortisol concentrations compared to C and CL-treated pigs (P < 0.05). For behavioral response, there were no differences between treatments on total UPAPS scores (C and CLF, P > 0.05). Intranasal FM was able to effectively reduce the physiological piglet's response immediately post-castration. Inguinal buffered lidocaine had no effect on the either physiological or behavioral response to pain. Long-term research should focus on refining injection techniques for inguinal BL and consider administration frequency and dosing of intranasal FM to control pain for a longer period post-castration.
Collapse
Affiliation(s)
- Magdiel Lopez-Soriano
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Victoria Rocha Merenda
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Stephanie Anderson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | | | - Kristen Messenger
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Juliana Bonin Ferreira
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Monique Danielle Pairis-Garcia
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Rajkumar RP. The influence of cultural and religious factors on cross-national variations in the prevalence of chronic back and neck pain: an analysis of data from the global burden of disease 2019 study. FRONTIERS IN PAIN RESEARCH 2023; 4:1189432. [PMID: 37305205 PMCID: PMC10248050 DOI: 10.3389/fpain.2023.1189432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Low back pain and neck pain are among the most commonly reported forms of chronic pain worldwide, and are associated with significant distress, disability and impairment in quality of life. Though these categories of pain can be analyzed and treated from a biomedical perspective, there is evidence that they are both related to psychological variables such as depression and anxiety. The experience of pain can be significantly influenced by cultural values. For example, cultural beliefs and attitudes can influence the meaning attached to the experience of pain, the responses of others to a sufferer's pain, and the likelihood of seeking medical care for particular symptoms. Likewise, religious beliefs and practices can influence the both experience of pain and the responses to it. These factors have also been associated with variations in the severity of depression and anxiety. Methods In the current study, data on the estimated national prevalence of both low back pain and neck pain, obtained from the 2019 Global Burden of Disease Study (GBD 2019), is analyzed in relation to cross-national variations in cultural values, as measured using Hofstede's model (n =115 countries) and in religious belief and practice, based on the most recent Pew Research Center survey (n = 105 countries). To address possible confounding factors, these analyses were adjusted for variables known to be associated with chronic low back or neck pain, namely smoking, alcohol use, obesity, anxiety, depression and insufficient physical activity. Results It was found that the cultural dimensions of Power Distance and Collectivism were inversely correlated with the prevalence of chronic low back pain, and Uncertainty Avoidance was inversely correlated with the prevalence of chronic neck pain, even after adjustment for potential confounders. Measures of religious affiliation and practice were negatively correlated with the prevalence of both conditions, but these associations were not significant after adjusting for cultural values and confounders. Discussion These results highlight the existence of meaningful cross-cultural variations in the occurrence of common forms of chronic musculoskeletal pain. Psychological and social factors that could account for these variations are reviewed, along with their implications for the holistic management of patients with these disorders.
Collapse
|
9
|
Stieglitz J, Buoro Y, Beheim B, Trumble BC, Kaplan H, Gurven M. Labour's pain: strenuous subsistence work, mechanical wear-and-tear and musculoskeletal pain in a non-industrialized population. Proc Biol Sci 2023; 290:20222497. [PMID: 37161336 PMCID: PMC10170198 DOI: 10.1098/rspb.2022.2497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Musculoskeletal pain is the most debilitating human health condition. Neurophysiological pain mechanisms are highly conserved and promote somatic maintenance and learning to avoid future harm. However, some chronic pain might be more common owing to mismatches between modern lifestyles and traits that originally evolved under distinct premodern conditions. To inform assumptions about factors affecting chronic pain vulnerability prior to industrialization, we assess pain prevalence, perceived causes, and predictors among Tsimane forager-horticulturalists. Habitual subsistence work is the primary reported cause of pain throughout life for both sexes, and pain is more common with age, especially in the back, and for those with more musculoskeletal problems. Sex differences in pain are relatively weak, and we find no association between women's reproductive history and pain, contrary to the hypothesis that reproduction causes women's greater pain susceptibility. Age-standardized current pain prevalence is 1.7-8.2 times higher for Tsimane than other select populations, and Tsimane chronic pain prevalence is within the range of variation observed elsewhere. Chronic low back pain is not a 'mismatch disease' limited to post-industrialized populations. Hominin musculoskeletal changes supporting bipedalism probably imposed health costs, which, after millions of years of evolution, remain an epidemiological burden that may be exacerbated by modern conditions.
Collapse
Affiliation(s)
- Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Université Toulouse 1 Capitole, Toulouse 31080, France
| | - Yoann Buoro
- Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| | - Bret Beheim
- Department of Human Behavior, Ecology and Culture, Max-Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Hillard Kaplan
- Economic Science Institute, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Michael Gurven
- Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
10
|
Walters ET, Crook RJ, Neely GG, Price TJ, Smith ESJ. Persistent nociceptor hyperactivity as a painful evolutionary adaptation. Trends Neurosci 2023; 46:211-227. [PMID: 36610893 PMCID: PMC9974896 DOI: 10.1016/j.tins.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
11
|
Himmel NJ, Sakurai A, Patel AA, Bhattacharjee S, Letcher JM, Benson MN, Gray TR, Cymbalyuk GS, Cox DN. Chloride-dependent mechanisms of multimodal sensory discrimination and nociceptive sensitization in Drosophila. eLife 2023; 12:76863. [PMID: 36688373 PMCID: PMC9904763 DOI: 10.7554/elife.76863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Individual sensory neurons can be tuned to many stimuli, each driving unique, stimulus-relevant behaviors, and the ability of multimodal nociceptor neurons to discriminate between potentially harmful and innocuous stimuli is broadly important for organismal survival. Moreover, disruptions in the capacity to differentiate between noxious and innocuous stimuli can result in neuropathic pain. Drosophila larval class III (CIII) neurons are peripheral noxious cold nociceptors and innocuous touch mechanosensors; high levels of activation drive cold-evoked contraction (CT) behavior, while low levels of activation result in a suite of touch-associated behaviors. However, it is unknown what molecular factors underlie CIII multimodality. Here, we show that the TMEM16/anoctamins subdued and white walker (wwk; CG15270) are required for cold-evoked CT, but not for touch-associated behavior, indicating a conserved role for anoctamins in nociception. We also evidence that CIII neurons make use of atypical depolarizing chloride currents to encode cold, and that overexpression of ncc69-a fly homologue of NKCC1-results in phenotypes consistent with neuropathic sensitization, including behavioral sensitization and neuronal hyperexcitability, making Drosophila CIII neurons a candidate system for future studies of the basic mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Atit A Patel
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | | | - Jamin M Letcher
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Maggie N Benson
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Thomas R Gray
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | | | - Daniel N Cox
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| |
Collapse
|
12
|
Büchel C. Pain persistence and the pain modulatory system: an evolutionary mismatch perspective. Pain 2022; 163:1274-1276. [PMID: 34855646 PMCID: PMC7612894 DOI: 10.1097/j.pain.0000000000002522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Johnston CH, Whittaker AL, Franklin SH, Hutchinson MR. The Neuroimmune Interface and Chronic Pain Through the Lens of Production Animals. Front Neurosci 2022; 16:887042. [PMID: 35663552 PMCID: PMC9160236 DOI: 10.3389/fnins.2022.887042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Communication between the central nervous system (CNS) and the immune system has gained much attention for its fundamental role in the development of chronic and pathological pain in humans and rodent models. Following peripheral nerve injury, neuroimmune signaling within the CNS plays an important role in the pathophysiological changes in pain sensitivity that lead to chronic pain. In production animals, routine husbandry procedures such as tail docking and castration, often involve some degree of inflammation and peripheral nerve injury and consequently may lead to chronic pain. Our understanding of chronic pain in animals is limited by the difficulty in measuring this pathological pain state. In light of this, we have reviewed the current understanding of chronic pain in production animals. We discuss our ability to measure pain and the implications this has on animal welfare and production outcomes. Further research into the neuroimmune interface in production animals will improve our fundamental understanding of chronic pain and better inform human clinical pain management and animal husbandry practices and interventions.
Collapse
Affiliation(s)
- Charlotte H. Johnston
- Faculty of Health Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Samantha H. Franklin
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Equine Health and Performance Centre, University of Adelaide, Roseworthy, SA, Australia
| | - Mark R. Hutchinson
- Faculty of Health Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
14
|
Radulescu A, White FA, Chenu C. What Did We Learn About Fracture Pain from Animal Models? J Pain Res 2022; 15:2845-2856. [PMID: 36124034 PMCID: PMC9482434 DOI: 10.2147/jpr.s361826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Progress in bone fracture repair research has been made possible due to the development of reproducible models of fracture in rodents with more clinically relevant fracture fixation, where there is considerably better assessment of the factors that affect fracture healing and/or novel therapeutics. However, chronic or persistent pain is one of the worst, longest-lasting and most difficult symptoms to manage after fracture repair, and an ongoing challenge remains for animal welfare as limited information exists regarding pain scoring and management in these rodent fracture models. This failure of adequate pre-clinical pain assessment following osteotomy in the rodent population may not only subject the animal to severe pain states but may also affect the outcome of the bone healing study. Animal models to study pain were also mainly developed in rodents, and there is increasing validation of fracture and pain models to quantitatively evaluate fracture pain and to study the factors that generate and maintain fracture pain and develop new therapies for treating fracture pain. This review aims to discuss the different animal models for fracture pain research and characterize what can be learned from using animal models of fracture regarding behavioral pain states and new molecular targets for future management of these behaviors.
Collapse
Affiliation(s)
- Andreea Radulescu
- Royal Veterinary College, Department of Comparative Biomedical Sciences, London, NW1 OTU, UK
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Medical Center, Indianapolis, IN, USA
| | - Chantal Chenu
- Royal Veterinary College, Department of Comparative Biomedical Sciences, London, NW1 OTU, UK
- Correspondence: Chantal Chenu, Royal Veterinary College, Department of Comparative Biological Sciences, Royal College Street, London, NW1 0TU, UK, Tel +44 207 468 5045, Email
| |
Collapse
|
15
|
Keen S, Lomeli-Rodriguez M, Williams ACDC. Exploring how people with chronic pain understand their pain: a qualitative study. Scand J Pain 2021; 21:743-753. [PMID: 34331751 DOI: 10.1515/sjpain-2021-0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES A fundamental principle of pain management is educating patients on their pain using current neuroscience. However, current pain neurophysiology education (PNE) interventions show variable success in improving pain outcomes, and may be difficult to integrate with existing understanding of pain. This study aimed to investigate how people with chronic pain understand their pain, using qualitative exploration of their conceptualisations of pain, and how this understanding accommodated, or resisted, the messages of PNE. METHODS Twelve UK adults with chronic pain were recruited through advertisements on online pain networks. Semi-structured interviews were conducted remotely, with responses elicited using the Grid Elaboration Method (GEM) and then a PNE article. Participants' grid elaborations and responses to PNE were analysed using thematic analysis (TA). RESULTS Three main themes were extracted from participants' grid elaborations: communicating pain, explaining pain and living with pain. These themes incorporated varied, inconsistent sub-themes: of pain as simultaneously experiential and conceptual; in the body and in the mind; diagnosable and inexplicable; manageable and insuperable. Generalised, meta-level agreement was identified in participants' PNE responses, but with doubts about its practical value. CONCLUSIONS This study shows that people understand pain through inconsistent experiential models that may resist attempts at conceptual integration. Participants' elaborations showed diverse and dissonant conceptualisations, with experiential themes of restricted living; assault on the self; pursuit of understanding pain and abandonment of that pursuit. Responses, although unexpectedly compatible with PNE, suggested that PNE was perceived as intellectually engaging but practically inadequate. Experiential disconfirmation may be required for behavioural change inhibited by embedded fears and aversive experiences. ETHICAL COMMITTEE NUMBER UCL REC# 17833/003.
Collapse
Affiliation(s)
- Sam Keen
- Research Department of Clinical, Educational & Health Psychology, University College London, London, UK
| | - Martha Lomeli-Rodriguez
- Research Department of Clinical, Educational & Health Psychology, University College London, London, UK
| | - Amanda C de C Williams
- Research Department of Clinical, Educational & Health Psychology, University College London, London, UK
| |
Collapse
|
16
|
Mota-Rojas D, Olmos-Hernández A, Verduzco-Mendoza A, Hernández E, Martínez-Burnes J, Whittaker AL. The Utility of Grimace Scales for Practical Pain Assessment in Laboratory Animals. Animals (Basel) 2020; 10:ani10101838. [PMID: 33050267 PMCID: PMC7600890 DOI: 10.3390/ani10101838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Grimace scales for laboratory animals were first reported ten years ago. Yet, despite their promise as pain assessment tools it appears that they have not been implemented widely in animal research establishments for clinical pain assessment. We discuss potential reasons for this based on the knowledge gained to date on their use and suggest avenues for further research, which might improve uptake of their use in laboratory animal medicine. Abstract Animals’ facial expressions are widely used as a readout for emotion. Scientific interest in the facial expressions of laboratory animals has centered primarily on negative experiences, such as pain, experienced as a result of scientific research procedures. Recent attempts to standardize evaluation of facial expressions associated with pain in laboratory animals has culminated in the development of “grimace scales”. The prevention or relief of pain in laboratory animals is a fundamental requirement for in vivo research to satisfy community expectations. However, to date it appears that the grimace scales have not seen widespread implementation as clinical pain assessment techniques in biomedical research. In this review, we discuss some of the barriers to implementation of the scales in clinical laboratory animal medicine, progress made in automation of collection, and suggest avenues for future research.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Ciudad de México 04960, CDMX, Mexico;
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan 14389, CDMX, Mexico; (A.O.-H.); (A.V.-M.)
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan 14389, CDMX, Mexico; (A.O.-H.); (A.V.-M.)
| | - Elein Hernández
- Department of Clinical Studies and Surgery, Facultad de Estudios Superiores Cuautiltán UNAM, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd Victoria 87000, Tamaulipas, Mexico;
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, SA 5116, Australia
- Correspondence:
| |
Collapse
|
17
|
Rantala MJ, Luoto S, Krama T, Krams I. Eating Disorders: An Evolutionary Psychoneuroimmunological Approach. Front Psychol 2019; 10:2200. [PMID: 31749720 PMCID: PMC6842941 DOI: 10.3389/fpsyg.2019.02200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders.
Collapse
Affiliation(s)
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Tatjana Krama
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
18
|
Hearn L, Williams ACDC. Pain in dinosaurs: what is the evidence? Philos Trans R Soc Lond B Biol Sci 2019; 374:20190370. [PMID: 31544618 DOI: 10.1098/rstb.2019.0370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
How far back can we trace behaviour associated with pain? Behaviour is not preserved in the palaeontological record, so, for dinosaurs, we are restricted to what we can deduce from fossilized bones and tracks. This review is a thought experiment using circumstantial evidence from dinosaur fossils and from the behaviour of their extant relatives to describe probable responses of dinosaurs to serious injuries. Searches yielded 196 papers and chapters with: reports of healed serious injuries, and limping gait and injured feet in trackways; information about physiology and behaviour relevant to healing; evidence of evolutionary connections with birds and crocodilians, and their behaviour; and information about relevant aspects of evolution. Clearly, many dinosaurs survived injuries that would have seriously hampered mobility, impairing hunting or escape from predators, and affecting social interactions. Recovery from severe injuries implies pain-mediated responses. Rates of healing seem faster than for other reptiles, possibily aided by warm-bloodedness. Nesting was often communal, raising the possibility of parental and group protection for injured young. The existence of family groups, packs or herds raises the possibility of protection or feeding from pack kills. This is the first study, to our knowledge, of possible pain behaviour and responses to injury in dinosaurs. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Les Hearn
- Cochrane Pain, Palliative and Supportive Care Review Group, Oxford, UK
| | - Amanda C de C Williams
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
19
|
Walters ET, Williams ACDC. Evolution of mechanisms and behaviour important for pain. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190275. [PMID: 31544614 DOI: 10.1098/rstb.2019.0275] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the biology of pain is limited by our ignorance about its evolution. We know little about how states in other species showing various degrees of apparent similarity to human pain states are related to human pain, or how the mechanisms essential for pain-related states evolved. Nevertheless, insights into the evolution of mechanisms and behaviour important for pain are beginning to emerge from wide-ranging investigations of cellular mechanisms and behavioural responses linked to nociceptor activation, tissue injury, inflammation and the environmental context of these responses in diverse species. In February 2019, an unprecedented meeting on the evolution of pain hosted by the Royal Society brought together scientists from disparate fields who investigate nociception and pain-related behaviour in crustaceans, insects, leeches, gastropod and cephalopod molluscs, fish and mammals (primarily rodents and humans). Here, we identify evolutionary themes that connect these research efforts, including adaptive and maladaptive features of pain-related behavioural and neuronal alterations-some of which are quite general, and some that may apply primarily to humans. We also highlight major questions, including how pain should be defined, that need to be answered as we seek to understand the evolution of pain. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX 77030, USA
| | - Amanda C de C Williams
- Research Department of Clinical, Educational and Health Psychology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|