1
|
Wion AP, Pearse IS, Broxson M, Redmond MD. Mast hindcasts reveal pervasive effects of extreme drought on a foundational conifer species. THE NEW PHYTOLOGIST 2025. [PMID: 39980122 DOI: 10.1111/nph.20321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/07/2024] [Indexed: 02/22/2025]
Abstract
Predicting seed production is challenging because many plants produce highly variable crops among years (i.e. masting), but doing so can inform forest management, conservation, and our understanding of ecosystem trajectories in a changing climate. We evaluated the ability of an existing model to forecast masting in an ecologically and culturally important tree species in the southwestern United States, Pinus edulis. Annual seed cone production was predicted using cross-validation techniques on two unique out-of-sample datasets, representing different collection methods and spatial scales (cone scars and cone counts). We then hindcasted this model into the historical past to evaluate whether seed production has declined with the onset of extreme drought conditions in western North America. The evaluated model had fair skill, with root-mean-squared error of 6%. The model had better skill predicting the interannual variability within a site than among sites (i.e. within years). Hindcast analyses indicated recent (2000-2024) mean annual cone production was 30.6% lower than in the past century (1900-1999). Mast forecasts are within reach, but much room remains for improvement. Forecasts may be a powerful tool to anticipate the effects of climate change on forests and woodlands.
Collapse
Affiliation(s)
- Andreas P Wion
- U.S. Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, 300 Dinosaur Trail, Santa Fe, NM, 87508, USA
| | - Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| | - Max Broxson
- University of Colorado, Colorado Springs, CO, 80918, USA
| | - Miranda D Redmond
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
LaMontagne JM, Greene DF, Holland EP, Johnstone JF, Schulze M, Zimmerman JK, Lyon NJ, Chen A, Miller TEX, Nigro KM, Snell RS, Barton JH, Chaudhary VB, Cleavitt NL, Crone EE, Koenig WD, Macias D, Pearse IS, Redmond MD. Community Synchrony in Seed Production is Associated With Trait Similarity and Climate Across North America. Ecol Lett 2024; 27:e14498. [PMID: 39739306 DOI: 10.1111/ele.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 01/02/2025]
Abstract
Mast seeding, the synchronous and highly variable production of seed crops by perennial plants, is a population-level phenomenon and has cascading effects in ecosystems. Mast seeding studies are typically conducted at the population/species level. Much less is known about synchrony in mast seeding between species because the necessary long-term data are rarely available. To investigate synchrony between species within communities, we used long-term data from seven forest communities in the U.S. Long-Term Ecological Research (LTER) network, ranging from tropical rainforest to boreal forest. We focus on cross-species synchrony and (i) quantify synchrony in reproduction overall and within LTER sites, (ii) test for relationships between synchrony with trait and phylogenetic similarity and (iii) investigate how climate conditions at sites are related to levels of synchrony. Overall, reproductive synchrony between woody plant species was greater than expected by chance, but spanned a wide range of values between species. Based on 11 functional and reproductive traits for 103 species (plus phylogenetic relatedness), cross-species synchrony in reproduction was driven primarily by trait similarity with phylogeny being largely unimportant, and synchrony was higher in sites with greater climatic water deficit. Community-level synchrony in masting has consequences for understanding forest regeneration dynamics and consumer-resource interactions.
Collapse
Affiliation(s)
- Jalene M LaMontagne
- Department of Biology, University of Missouri - St. Louis, St. Louis, Missouri, United States
- Whitney R. Harris World Ecology Center, University of Missouri - St. Louis, St. Louis, Missouri, United States
- Science and Conservation Division, Missouri Botanical Garden, St. Louis, Missouri, United States
| | - David F Greene
- Department of Forestry, Fire, and Range Management, Cal Poly Humboldt, Arcata, California, USA
| | | | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mark Schulze
- H.J. Andrews Experimental Forest, Oregon State University, Blue River, Oregon, USA
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Nicholas J Lyon
- Long-Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, USA
| | - Angel Chen
- Long-Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, USA
| | - Tom E X Miller
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Katherine M Nigro
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado, USA
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Jessica H Barton
- Department of Biology, University of Missouri - St. Louis, St. Louis, Missouri, United States
| | - V Bala Chaudhary
- Environmental Studies Department, Dartmouth College, Hanover, New Hampshire, USA
| | - Natalie L Cleavitt
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Elizabeth E Crone
- Department of Evolution & Ecology, University of California Davis, Davis, California, USA
| | - Walter D Koenig
- Hastings Reservation, University of California Berkeley, Carmel Valley, California, USA
| | - Diana Macias
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
| | - Ian S Pearse
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Miranda D Redmond
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Pearse IS, Wion AP. Hurricanes: an unexpected mechanism linking disturbance and seed production in trees. THE NEW PHYTOLOGIST 2024; 242:8-9. [PMID: 38286765 DOI: 10.1111/nph.19559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
This article is a Commentary on Cannon et al. (2024), 242: 289–301.
Collapse
Affiliation(s)
- Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| | - Andreas P Wion
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| |
Collapse
|
4
|
Cannon JB, Rutledge BT, Puhlick JJ, Willis JL, Brockway DG. Tropical cyclone winds and precipitation stimulate cone production in the masting species longleaf pine (Pinus palustris). THE NEW PHYTOLOGIST 2024; 242:289-301. [PMID: 38009313 DOI: 10.1111/nph.19381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
Many trees exhibit masting - where reproduction is temporally variable and synchronous over large areas. Several dominant masting species occur in tropical cyclone (TC)-prone regions, but it is unknown whether TCs correlate with mast seeding. We analyzed long-term data (1958-2022) to test the hypothesis that TCs influence cone production in longleaf pine (Pinus palustris). We integrate field observations, weather data, satellite imagery, and hurricane models to test whether TCs influence cone production via: increased precipitation; canopy density reduction; and/or mechanical stress from wind. Cone production was 31% higher 1 yr after hurricanes and 71% higher after 2 yr, before returning to baseline levels. Cyclone-associated precipitation was correlated with increased cone production in wet years and cone production increased after low-intensity winds (≤ 25 m s-1 ) but not with high-intensity winds (> 25 m s-1 ). Tropical cyclones may stimulate cone production via precipitation addition, but high-intensity winds may offset any gains. Our study is the first to support the direct influence of TCs on reproduction, suggesting a previously unknown environmental correlate of masting, which may occur in hurricane-prone forests world-wide.
Collapse
Affiliation(s)
| | | | | | - John L Willis
- USDA Forest Service, Southern Research Station, Auburn, AL, 36849, USA
| | - Dale G Brockway
- USDA Forest Service, Southern Research Station, Auburn, AL, 36849, USA
| |
Collapse
|
5
|
Beck JJ, McKone MJ, Wagenius S. Masting, fire-stimulated flowering, and the evolutionary ecology of synchronized reproduction. Ecology 2024; 105:e4261. [PMID: 38363004 DOI: 10.1002/ecy.4261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
Synchronized episodic reproduction among long-lived plants shapes ecological interactions, ecosystem dynamics, and evolutionary processes worldwide. Two active scientific fields investigate the causes and consequences of such synchronized reproduction: the fields of masting and fire-stimulated flowering. While parallels between masting and fire-stimulated flowering have been previously noted, there has been little dialogue between these historically independent fields. We predict that the synthesis of these fields will facilitate new insight into the causes and consequences of synchronized reproduction. Here we briefly review parallels between masting and fire-stimulated flowering, using two case studies and a database of 1870 plant species to facilitate methodological, conceptual, geographical, taxonomic, and phylogenetic comparisons. We identify avenues for future research and describe three key opportunities associated with synthesis. First, the taxonomic and geographic complementarity of empirical studies from these historically independent fields highlights the potential to derive more general inferences about global patterns and consequences of synchronized reproduction in perennial plants. Second, masting's well developed conceptual framework for evaluating adaptive hypotheses can help guide empirical studies of fire-stimulated species and enable stronger inferences about the evolutionary ecology of fire-stimulated flowering. Third, experimental manipulation of reproductive variation in fire-stimulated species presents unique opportunities to empirically investigate foundational questions about ecological and evolutionary processes underlying synchronized reproduction. Synthesis of these fields and their complementary insights offers a unique opportunity to advance our understanding of the evolutionary ecology of synchronized reproduction in perennial plants.
Collapse
Affiliation(s)
- Jared J Beck
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Mark J McKone
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Stuart Wagenius
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois, USA
| |
Collapse
|
6
|
Wion AP, Pearse IS, Rodman KC, Veblen TT, Redmond MD. The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200378. [PMID: 34657459 PMCID: PMC8520773 DOI: 10.1098/rstb.2020.0378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
We aimed to disentangle the patterns of synchronous and variable cone production (i.e. masting) and its relationship to climate in two conifer species native to dry forests of western North America. We used cone abscission scars to reconstruct ca 15 years of recent cone production in Pinus edulis and Pinus ponderosa, and used redundancy analysis to relate time series of annual cone production to climate indices describing the North American monsoon and the El Niño Southern Oscillation (ENSO). We show that the sensitivity to climate and resulting synchrony in cone production varies substantially between species. Cone production among populations of P. edulis was much more spatially synchronous and more closely related to large-scale modes of climate variability than among populations of P. ponderosa. Large-scale synchrony in P. edulis cone production was associated with the North American monsoon and we identified a dipole pattern of regional cone production associated with ENSO phase. In P. ponderosa, these climate indices were not strongly associated with cone production, resulting in asynchronous masting patterns among populations. This study helps frame our understanding of mast seeding as a life-history strategy and has implications for our ability to forecast mast years in these species. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andreas P. Wion
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| | - Ian S. Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Kyle C. Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Thomas T. Veblen
- Department of Geography, University of Colorado, Boulder, CO 80302, USA
| | - Miranda D. Redmond
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| |
Collapse
|
7
|
Pearse IS, Wion AP, Gonzalez AD, Pesendorfer MB. Understanding mast seeding for conservation and land management. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200383. [PMID: 34657466 PMCID: PMC8520776 DOI: 10.1098/rstb.2020.0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
Masting, the intermittent and synchronous production of large seed crops, can have profound consequences for plant populations and the food webs that are built on their seeds. For centuries, people have recorded mast crops because of their importance in managing wildlife populations. In the past 30 years, we have begun to recognize the importance of masting in conserving and managing many other aspects of the environment: promoting the regeneration of forests following fire or other disturbance, conserving rare plants, conscientiously developing the use of edible seeds as non-timber forest products, coping with the consequences of extinctions on seed dispersal, reducing the impacts of plant invasions with biological control, suppressing zoonotic diseases and preventing depredation of endemic fauna. We summarize current instances and future possibilities of a broad set of applications of masting. By exploring in detail several case studies, we develop new perspectives on how solutions to pressing conservation and land management problems may benefit by better understanding the dynamics of seed production. A lesson common to these examples is that masting can be used to time management, and often, to do this effectively, we need models that explicitly forecast masting and the dynamics of seed-eating animals into the near-term future. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Ian S. Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Andreas P. Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523-1177, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Angela D. Gonzalez
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Mario B. Pesendorfer
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna 1190, Austria
- Smithsonian Conservation Biology Institute, Migratory Bird Center, Washington, DC 20013, USA
| |
Collapse
|
8
|
Pesendorfer MB, Ascoli D, Bogdziewicz M, Hacket-Pain A, Pearse IS, Vacchiano G. The ecology and evolution of synchronized reproduction in long-lived plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200369. [PMID: 34657462 PMCID: PMC8520778 DOI: 10.1098/rstb.2020.0369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Populations of many long-lived plants exhibit spatially synchronized seed production that varies extensively over time, so that seed production in some years is much higher than on average, while in others, it is much lower or absent. This phenomenon termed masting or mast seeding has important consequences for plant reproductive success, ecosystem dynamics and plant-human interactions. Inspired by recent advances in the field, this special issue presents a series of articles that advance the current understanding of the ecology and evolution of masting. To provide a broad overview, we reflect on the state-of-the-art of masting research in terms of underlying proximate mechanisms, ontogeny, adaptations, phylogeny and applications to conservation. While the mechanistic drivers and fitness consequences of masting have received most attention, the evolutionary history, ontogenetic trajectory and applications to plant-human interactions are poorly understood. With increased availability of long-term datasets across broader geographical and taxonomic scales, as well as advances in molecular approaches, we expect that many mysteries of masting will be solved soon. The increased understanding of this global phenomenon will provide the foundation for predictive modelling of seed crops, which will improve our ability to manage forests and agricultural fruit and nut crops in the Anthropocene. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Mario B. Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, A-1180 Vienna, Austria
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland
- INRAE, LESSEM, University Grenoble Alpes, 38400 Saint-Martin-d'Hères, France
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Ian S. Pearse
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO 80526, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
9
|
Garcia G, Re B, Orians C, Crone E. By wind or wing: pollination syndromes and alternate bearing in horticultural systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200371. [PMID: 34657465 PMCID: PMC8520786 DOI: 10.1098/rstb.2020.0371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 11/12/2022] Open
Abstract
Cyclical fluctuations in reproductive output are widespread among perennial plants, from multi-year masting cycles in forest trees to alternate bearing in horticultural crops. In natural systems, ecological drivers such as climate and pollen limitation can result in synchrony among plants. Agricultural practices are generally assumed to outweigh ecological drivers that might synchronize alternate-bearing individuals, but this assumption has not been rigorously assessed and little is known about the role of pollen limitation as a driver of synchrony in alternate-bearing crops. We tested whether alternate-bearing perennial crops show signs of alternate bearing at a national scale and whether the magnitude of national-scale alternate bearing differs across pollination syndromes. We analysed the Food and Agriculture Organization of the United Nations time series (1961-2018) of national crop yields across the top-producing countries of 27 alternate-bearing taxa, 6 wind-pollinated and 21 insect-pollinated. Alternate bearing was common in these national data and more pronounced in wind-pollinated taxa, which exhibited a more negative lag-1 autocorrelation and a higher coefficient of variation (CV). We highlight the mutual benefits of integrating ecological theory and agricultural data for (i) advancing our understanding of perennial plant reproduction across time, space and taxa, and (ii) promoting stable farmer livelihoods and global food supply. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Gabriela Garcia
- Department of Biology, Tufts University, Medford MA 02155 USA
| | - Bridget Re
- Department of Biology, Tufts University, Medford MA 02155 USA
| | - Colin Orians
- Department of Biology, Tufts University, Medford MA 02155 USA
| | - Elizabeth Crone
- Department of Biology, Tufts University, Medford MA 02155 USA
| |
Collapse
|
10
|
LaMontagne JM, Redmond MD, Wion AP, Greene DF. An assessment of temporal variability in mast seeding of North American Pinaceae. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200373. [PMID: 34657469 PMCID: PMC8520784 DOI: 10.1098/rstb.2020.0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Our overall objective is to synthesize mast-seeding data on North American Pinaceae to detect characteristic features of reproduction (i.e. development cycle length, serotiny, dispersal agents), and test for patterns in temporal variation based on weather variables. We use a large dataset (n = 286 time series; mean length = 18.9 years) on crop sizes in four conifer genera (Abies, Picea, Pinus, Tsuga) collected between 1960 and 2014. Temporal variability in mast seeding (CVp) for 2 year genera (Abies, Picea, Tsuga) was higher than for Pinus (3 year), and serotinous species had lower CVp than non-serotinous species; there were no relationships of CVp with elevation or latitude. There was no difference in family-wide CVp across four tree regions of North America. Across all genera, July temperature differences between bud initiation and the prior year (ΔT) was more strongly associated with reproduction than absolute temperature. Both CVp and ΔT remained steady over time, while absolute temperature increased by 0.09°C per decade. Our use of the ΔT model included a modification for Pinus, which initiates cone primordia 2 years before seedfall, as opposed to 1 year. These findings have implications for how mast-seeding patterns may change with future increases in temperature, and the adaptive benefits of mast seeding. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Jalene M. LaMontagne
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Avenue, Chicago, IL 60614, USA
| | - Miranda D. Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Andreas P. Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - David F. Greene
- Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, USA
| |
Collapse
|
11
|
Ascoli D, Hacket-Pain A, Pearse IS, Vacchiano G, Corti S, Davini P. Modes of climate variability bridge proximate and evolutionary mechanisms of masting. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200380. [PMID: 34657463 PMCID: PMC8520781 DOI: 10.1098/rstb.2020.0380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Davide Ascoli
- Department DISAFA, University of Torino (IT), Torino TO, Italy
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool (UK), UK
| | - Ian S. Pearse
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | | | - Susanna Corti
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Bologna, Italy
| | - Paolo Davini
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Torino, Italy
| |
Collapse
|