1
|
Xue W, Hong J, Wang T. The evolutionary landscape of prokaryotic chromosome/plasmid balance. Commun Biol 2024; 7:1434. [PMID: 39496780 PMCID: PMC11535066 DOI: 10.1038/s42003-024-07167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
The balance between chromosomal and plasmid DNAs determines the genomic plasticity of prokaryotes. Natural selections, acting on the level of organisms or plasmids, shape the abundances of plasmid DNAs in prokaryotic genomes. Despite the importance of plasmids in health and engineering, there have been rare systematic attempts to quantitatively model and predict the determinants underlying the strength of different selection forces. Here, we develop a metabolic flux model that describes the intracellular resource competition between chromosomal and plasmid-encoded reactions. By coarse graining, this model predicts a landscape of natural selections on chromosome/plasmid balance, which is featured by the tradeoff between phenotypic and non-phenotypic selection pressures. This landscape is further validated by the observed pattern of plasmid distributions in the vast collection of prokaryotic genomes retrieved from the NCBI database. Our results establish a universal paradigm to understand the prokaryotic chromosome/plasmid interplay and provide insights into the evolutionary origin of plasmid diversity.
Collapse
Affiliation(s)
- Wenzhi Xue
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Love AM, Nair NU. Specific codons control cellular resources and fitness. SCIENCE ADVANCES 2024; 10:eadk3485. [PMID: 38381824 PMCID: PMC10881034 DOI: 10.1126/sciadv.adk3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
As cellular engineering progresses from simply overexpressing proteins to imparting complex phenotypes through multigene expression, judicious appropriation of cellular resources is essential. Since codon use is degenerate and biased, codons may control cellular resources at a translational level. We investigate how partitioning transfer RNA (tRNA) resources by incorporating dissimilar codon usage can drastically alter interdependence of expression level and burden on the host. By isolating the effect of individual codons' use during translation elongation while eliminating confounding factors, we show that codon choice can trans-regulate fitness of the host and expression of other heterologous or native genes. We correlate specific codon usage patterns with host fitness and derive a coding scheme for multigene expression called the Codon Health Index (CHI, χ). This empirically derived coding scheme (χ) enables the design of multigene expression systems that avoid catastrophic cellular burden and is robust across several proteins and conditions.
Collapse
Affiliation(s)
- Aaron M. Love
- Manus Bio, Waltham, MA 02453, USA
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Nikhil U. Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
3
|
Brülisauer L, León-Sampedro R, Hall AR. Clinical antibiotic-resistance plasmids have small effects on biofilm formation and population growth in Escherichia coli in vitro. Plasmid 2023; 128:102706. [PMID: 37652194 DOI: 10.1016/j.plasmid.2023.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Antimicrobial resistance (AR) mechanisms encoded on plasmids can affect other phenotypic traits in bacteria, including biofilm formation. These effects may be important contributors to the spread of AR and the evolutionary success of plasmids, but it is not yet clear how common such effects are for clinical plasmids/bacteria, and how they vary among different plasmids and host strains. Here, we used a combinatorial approach to test the effects of clinical AR plasmids on biofilm formation and population growth in clinical and laboratory Escherichia coli strains. In most of the 25 plasmid-bacterium combinations tested, we observed no significant change in biofilm formation upon plasmid introduction, contrary to the notion that plasmids frequently alter biofilm formation. In a few cases we detected altered biofilm formation, and these effects were specific to particular plasmid-bacterium combinations. By contrast, we found a relatively strong effect of a chromosomal streptomycin-resistance mutation (in rpsL) on biofilm formation. Further supporting weak and host-strain-dependent effects of clinical plasmids on bacterial phenotypes in the combinations we tested, we found growth costs associated with plasmid carriage (measured in the absence of antibiotics) were moderate and varied among bacterial strains. These findings suggest some key clinical resistance plasmids cause only mild phenotypic disruption to their host bacteria, which may contribute to the persistence of plasmids in the absence of antibiotics.
Collapse
Affiliation(s)
- Laura Brülisauer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
| | - Ricardo León-Sampedro
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland; Centro de Investigación Biológica en Red, Epidemiología y Salud Pública- CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Dewan I, Uecker H. A mathematician's guide to plasmids: an introduction to plasmid biology for modellers. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001362. [PMID: 37505810 PMCID: PMC10433428 DOI: 10.1099/mic.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
5
|
Bethke JH, Ma HR, Tsoi R, Cheng L, Xiao M, You L. Vertical and horizontal gene transfer tradeoffs direct plasmid fitness. Mol Syst Biol 2022; 19:e11300. [PMID: 36573357 PMCID: PMC9912019 DOI: 10.15252/msb.202211300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Plasmid fitness is directed by two orthogonal processes-vertical transfer through cell division and horizontal transfer through conjugation. When considered individually, improvements in either mode of transfer can promote how well a plasmid spreads and persists. Together, however, the metabolic cost of conjugation could create a tradeoff that constrains plasmid evolution. Here, we present evidence for the presence, consequences, and molecular basis of a conjugation-growth tradeoff across 40 plasmids derived from clinical Escherichia coli pathogens. We discover that most plasmids operate below a conjugation efficiency threshold for major growth effects, indicating strong natural selection for vertical transfer. Below this threshold, E. coli demonstrates a remarkable growth tolerance to over four orders of magnitude change in conjugation efficiency. This tolerance fades as nutrients become scarce and horizontal transfer attracts a greater share of host resources. Our results provide insight into evolutionary constraints directing plasmid fitness and strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jonathan H Bethke
- Department of Molecular Genetics and MicrobiologyDuke UniversityNCDurhamUSA
| | - Helena R Ma
- Department of Biomedical EngineeringDuke UniversityNCDurhamUSA,Center for Quantitative BiodesignDuke UniversityNCDurhamUSA
| | - Ryan Tsoi
- Department of Biomedical EngineeringDuke UniversityNCDurhamUSA
| | - Li Cheng
- BGI‐ShenzhenShenzhenChina,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI‐ShenzhenShenzhenChina,School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Minfeng Xiao
- BGI‐ShenzhenShenzhenChina,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI‐ShenzhenShenzhenChina
| | - Lingchong You
- Department of Molecular Genetics and MicrobiologyDuke UniversityNCDurhamUSA,Department of Biomedical EngineeringDuke UniversityNCDurhamUSA,Center for Quantitative BiodesignDuke UniversityNCDurhamUSA,School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
6
|
Prah I, Nukui Y, Yamaoka S, Saito R. Emergence of a High-Risk Klebsiella michiganensis Clone Disseminating Carbapenemase Genes. Front Microbiol 2022; 13:880248. [PMID: 35677907 PMCID: PMC9169563 DOI: 10.3389/fmicb.2022.880248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 01/17/2023] Open
Abstract
Klebsiella michiganensis is emerging as an important human pathogen of concern especially strains with plasmid-mediated carbapenemase genes. The IncX3-blaNDM-5 plasmid has been described as the primary vector for blaNDM-5 dissemination. However, whether strains with this plasmid have any competitive edge remain largely unexplored. We characterized a blaNDM-5-producing Klebsiella michiganensis strain (KO_408) from Japan and sought to understand the driving force behind the recent dissemination of IncX3-blaNDM-5 plasmids in different bacterial hosts. Antibiotic susceptibility testing, conjugation, and whole-genome sequencing were performed for KO_408, a clinical isolate recovered from a respiratory culture. Fitness, stability, and competitive assays were performed using the IncX3-blaNDM-5 plasmid, pKO_4-NDM-5. KO_408 was ascribed to a novel sequence type, ST256, and harbored resistance genes conforming to its MDR phenotype. The blaNDM-5 gene was localized on the ~44.9 kb IncX3 plasmid (pKO_4-NDM-5), which was transferable in the conjugal assay. The acquisition of pKO_4-NDM-5 did not impose any fitness burden and showed high stability in the host cells. However, transformants with pKO_4-NDM-5 were outcompeted by their host cells and transconjugants with the IncX3-blaOXA-181 plasmid. The genetic environment of blaNDM-5 in pKO_4-NDM-5 has been previously described. pKO_4-NDM-5 showed a close phylogenetic distance with seven similar plasmids from China. KO_408 clustered with strains within the KoI phylogroup, which is closely associated with carbapenemase genes. This study highlights the emergence of a high-risk Klebsiella michiganensis clone harboring carbapenemase genes and affirms that the recent spread of IncX3-blaNDM-5 plasmids might be due to their low fitness cost and stability but not their competitive prowess.
Collapse
Affiliation(s)
- Isaac Prah
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Virology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Prevention, Tokyo Medical and Dental University Hospital, Tokyo, Japan.,Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Infection Control and Prevention, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Gluck-Thaler E, Vogan AA, Branco S. Giant mobile elements: Agents of multivariate phenotypic evolution in fungi. Curr Biol 2022; 32:R234-R236. [DOI: 10.1016/j.cub.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Physiological Responses of Ribosomal Protein S12 K43 Mutants of Corynebacterium glutamicum. Curr Microbiol 2022; 79:94. [PMID: 35142919 DOI: 10.1007/s00284-022-02795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
Bacterial resistance to streptomycin is often acquired as a consequence of mutations in rpsL, the gene encoding ribosomal protein S12. Corynebacterium glutamicum is a non-pathogenic Gram-positive soil bacterium that has been widely used in industry. In a previous study, we screened several streptomycin-resistant rpsL K43 mutants of C. glutamicum, and surprisingly found that two of them also confer chloramphenicol and/or kanamycin resistance. In order to understand whether or not a single mutation of rpsLK43 could confer resistance to multiple antibiotics, in this study we attempted to construct saturation mutagenesis of rpsL K43 by rational genetic manipulation. Despite many efforts had been made, only nine mutants were successfully constructed. They were indeed resistant to streptomycin, but not to other antibiotics. This suggested that other mutations should be acquired, contributing to multiple antibiotics in the screened strains. The growth and enhanced green fluorescent protein (eGFP) expression of these nine mutants were then investigated. The results showed that they grew differently in CGXII minimal medium, but not in BHI medium. When cultured in the absence of streptomycin, the expression of eGFP was positively proportional to the growth, approximately, while in the presence of streptomycin, the expression of eGFP was proportional to the ability of streptomycin resistance.
Collapse
|