1
|
Avila P, Mullon C. Evolutionary game theory and the adaptive dynamics approach: adaptation where individuals interact. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210502. [PMID: 36934752 PMCID: PMC10024992 DOI: 10.1098/rstb.2021.0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
Evolutionary game theory and the adaptive dynamics approach have made invaluable contributions to understanding how gradual evolution leads to adaptation when individuals interact. Here, we review some of the basic tools that have come out of these contributions to model the evolution of quantitative traits in complex populations. We collect together mathematical expressions that describe directional and disruptive selection in class- and group-structured populations in terms of individual fitness, with the aims of bridging different models and interpreting selection. In particular, our review of disruptive selection suggests there are two main paths that can lead to diversity: (i) when individual fitness increases more than linearly with trait expression; (ii) when trait expression simultaneously increases the probability that an individual is in a certain context (e.g. a given age, sex, habitat, size or social environment) and fitness in that context. We provide various examples of these and more broadly argue that population structure lays the ground for the emergence of polymorphism with unique characteristics. Beyond this, we hope that the descriptions of selection we present here help see the tight links among fundamental branches of evolutionary biology, from life history to social evolution through evolutionary ecology, and thus favour further their integration. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Piret Avila
- Institute for Advanced Studies in Toulouse, Université Toulouse 1 Capitole, 31080 Toulouse, France
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Massaro AP, Gilby IC, Desai N, Weiss A, Feldblum JT, Pusey AE, Wilson ML. Correlates of individual participation in boundary patrols by male chimpanzees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210151. [PMID: 35369753 DOI: 10.1098/rstb.2021.0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Group territory defence poses a collective action problem: individuals can free-ride, benefiting without paying the costs. Individual heterogeneity has been proposed to solve such problems, as individuals high in reproductive success, rank, fighting ability or motivation may benefit from defending territories even if others free-ride. To test this hypothesis, we analysed 30 years of data from chimpanzees (Pan troglodytes) in the Kasekela community, Gombe National Park, Tanzania (1978-2007). We examined the extent to which individual participation in patrols varied according to correlates of reproductive success (mating rate, rank, age), fighting ability (hunting), motivation (scores from personality ratings), costs of defecting (the number of adult males in the community) and gregariousness (sighting frequency). By contrast to expectations from collective action theory, males participated in patrols at consistently high rates (mean ± s.d. = 74.5 ± 11.1% of patrols, n = 23 males). The best predictors of patrol participation were sighting frequency, age and hunting participation. Current and former alpha males did not participate at a higher rate than males that never achieved alpha status. These findings suggest that the temptation to free-ride is low, and that a mutualistic mechanism such as group augmentation may better explain individual participation in group territorial behaviour. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
- Anthony P Massaro
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55414, USA
| | - Ian C Gilby
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA.,Institute of Human Origins, Arizona State University, Tempe, AZ 85281, USA
| | - Nisarg Desai
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Alexander Weiss
- National Evolutionary Synthesis Center, Durham, NC 27705, USA.,Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Joseph T Feldblum
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA.,Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Michael L Wilson
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55414, USA.,Department of Anthropology, University of Minnesota, Minneapolis, MN 55414, USA.,Institute on the Environment, University of Minnesota, St. Paul, MN 55414, USA
| |
Collapse
|
3
|
De Dreu CKW, Triki Z. Intergroup conflict: origins, dynamics and consequences across taxa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210134. [PMID: 35369751 PMCID: PMC8977662 DOI: 10.1098/rstb.2021.0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although uniquely destructive and wasteful, intergroup conflict and warfare are not confined to humans. They are seen across a range of group-living species, from social insects, fishes and birds to mammals, including nonhuman primates. With its unique collection of theory, research and review contributions from biology, anthropology and economics, this theme issue provides novel insights into intergroup conflict across taxa. Here, we introduce and organize this theme issue on the origins and consequences of intergroup conflict. We provide a coherent framework by modelling intergroup conflicts as multi-level games of strategy in which individuals within groups cooperate to compete with (individuals in) other groups for scarce resources, such as territory, food, mating opportunities, power and influence. Within this framework, we identify cross-species mechanisms and consequences of (participating in) intergroup conflict. We conclude by highlighting crosscutting innovations in the study of intergroup conflict set forth by individual contributions. These include, among others, insights on how within-group heterogeneities and leadership relate to group conflict, how intergroup conflict shapes social organization and how climate change and environmental degradation transition intergroup relations from peaceful coexistence to violent conflict. This article is part of the theme issue ‘Intergroup conflict across taxa’.
Collapse
Affiliation(s)
- Carsten K W De Dreu
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Center for Research in Experimental Economics and Political Decision Making, University of Amsterdam, Amsterdam, The Netherlands
| | - Zegni Triki
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Sankey DWE, Hunt KL, Croft DP, Franks DW, Green PA, Thompson FJ, Johnstone RA, Cant MA. Leaders of war: modelling the evolution of conflict among heterogeneous groups. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210140. [PMID: 35369752 PMCID: PMC8977670 DOI: 10.1098/rstb.2021.0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
War, in human and animal societies, can be extremely costly but can also offer significant benefits to the victorious group. We might expect groups to go into battle when the potential benefits of victory (V) outweigh the costs of escalated conflict (C); however, V and C are unlikely to be distributed evenly in heterogeneous groups. For example, some leaders who make the decision to go to war may monopolize the benefits at little cost to themselves ('exploitative' leaders). By contrast, other leaders may willingly pay increased costs, above and beyond their share of V ('heroic' leaders). We investigated conflict initiation and conflict participation in an ecological model where single-leader-multiple-follower groups came into conflict over natural resources. We found that small group size, low migration rate and frequent interaction between groups increased intergroup competition and the evolution of 'exploitative' leadership, while converse patterns favoured increased intragroup competition and the emergence of 'heroic' leaders. We also found evidence of an alternative leader/follower 'shared effort' outcome. Parameters that favoured high contributing 'heroic' leaders, and low contributing followers, facilitated transitions to more peaceful outcomes. We outline and discuss the key testable predictions of our model for empiricists studying intergroup conflict in humans and animals. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
- D. W. E. Sankey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - K. L. Hunt
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - D. P. Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - D. W. Franks
- Department of Biology and Department of Computer Science, University of York, York YO10 5DD, UK
| | - P. A. Green
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - F. J. Thompson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - R. A. Johnstone
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - M. A. Cant
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- German Primate Centre, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|