1
|
Wilhelm SDP, Kakadia JH, Beharry A, Kenana R, Hoffman KS, O'Donoghue P, Heinemann IU. Transfer RNA supplementation rescues HARS deficiency in a humanized yeast model of Charcot-Marie-Tooth disease. Nucleic Acids Res 2024; 52:14043-14060. [PMID: 39530218 DOI: 10.1093/nar/gkae996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aminoacyl-tRNA synthetases are indispensable enzymes in all cells, ensuring the correct pairing of amino acids to their cognate tRNAs to maintain translation fidelity. Autosomal dominant mutations V133F and Y330C in histidyl-tRNA synthetase (HARS) cause the genetic disorder Charcot-Marie-Tooth type 2W (CMT2W). Treatments are currently restricted to symptom relief, with no therapeutic available that targets the cause of disease. We previously found that histidine supplementation alleviated phenotypic defects in a humanized yeast model of CMT2W caused by HARS V155G and S356N that also unexpectedly exacerbated the phenotype of the two HARS mutants V133F and Y330C. Here, we show that V133F destabilizes recombinant HARS protein, which is rescued in the presence of tRNAHis. HARS V133F and Y330C cause mistranslation and cause changes to the proteome without activating the integrated stress response as validated by mass spectrometry and growth defects that persist with histidine supplementation. The growth defects and reduced translation fidelity caused by V133F and Y330C mutants were rescued by supplementation with human tRNAHis in a humanized yeast model. Our results demonstrate the feasibility of cognate tRNA as a therapeutic that rescues HARS deficiency and ameliorates toxic mistranslation generated by causative alleles for CMT.
Collapse
Affiliation(s)
- Sarah D P Wilhelm
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jenica H Kakadia
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rosan Kenana
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kyle S Hoffman
- Bioinformatics Solutions Inc, Waterloo, Ontario, N2L 3K8 Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Children's Health Research Institute, London, ON, N6C 4V3 Canada
| |
Collapse
|
2
|
Kok G, Schene IF, Ilcken EF, Alcaraz PS, Mendes MI, Smith DEC, Salomons G, Shehata S, Jans JJM, Maroofian R, Hoek TA, van Es RM, Rehmann H, Nieuwenhuis EES, Vos HR, Fuchs SA. Isoleucine-to-valine substitutions support cellular physiology during isoleucine deprivation. Nucleic Acids Res 2024:gkae1184. [PMID: 39657787 DOI: 10.1093/nar/gkae1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) couple tRNAs with their corresponding amino acids. While ARSs can bind structurally similar amino acids, extreme specificity is ensured by subsequent editing activity. Yet, we found that upon isoleucine (I) restriction, healthy fibroblasts consistently incorporated valine (V) into proteins at isoleucine codons, resulting from misacylation of tRNAIle with valine by wildtype IARS1. Using a dual-fluorescent reporter of translation, we found that valine supplementation could fully compensate for isoleucine depletion and restore translation to normal levels in healthy, but not IARS1 deficient cells. Similarly, the antiproliferative effects of isoleucine deprivation could be fully restored by valine supplementation in healthy, but not IARS1 deficient cells. This indicates I > V substitutions help prevent translational termination and maintain cellular function in human primary cells during isoleucine deprivation. We suggest that this is an example of a more general mechanism in mammalian cells to preserve translational speed at the cost of translational fidelity in response to (local) amino acid deficiencies.
Collapse
Affiliation(s)
- Gautam Kok
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Eveline F Ilcken
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marisa I Mendes
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Desiree E C Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gajja Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sawsan Shehata
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Judith J M Jans
- Laboratory of Metabolic Diseases, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Tim A Hoek
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Holger Rehmann
- Department Energy and Biotechnology, Flensburg University of Applied Sciences, Kanzleistraße 91-93 24943 Flensburg, Germany
| | - Edward E S Nieuwenhuis
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
3
|
Isaacson JR, Berg MD, Yeung W, Villén J, Brandl CJ, Moehring AJ. Impact of tRNA-induced proline-to-serine mistranslation on the transcriptome of Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae151. [PMID: 38989890 PMCID: PMC11373654 DOI: 10.1093/g3journal/jkae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.
Collapse
Affiliation(s)
| | - Matthew D Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - William Yeung
- Department of Biology, Western University, London, Canada, N6A 5B7
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
4
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
5
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
6
|
Isaacson JR, Berg MD, Jagiello J, Yeung W, Charles B, Villén J, Brandl CJ, Moehring AJ. Mistranslating tRNA variants have anticodon- and sex-specific impacts on Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598535. [PMID: 38915589 PMCID: PMC11195196 DOI: 10.1101/2024.06.11.598535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Transfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour. We established two mistranslating fly lines, one with a tRNASer variant that misincorporates serine at valine codons (V→S) and the other that misincorporates serine at threonine codons (T→S). While both mistranslating tRNAs increased development time and developmental lethality, the severity of the impacts differed depending on amino acid substitution and sex. The V→S variant extended embryonic, larval, and pupal development whereas the T→S only extended larval and pupal development. Females, but not males, containing either mistranslating tRNA presented with significantly more anatomical deformities than controls. Mistranslating females also experienced extended lifespan whereas mistranslating male lifespan was unaffected. In addition, mistranslating flies from both sexes showed improved locomotion as they aged, suggesting delayed neurodegeneration. Therefore, although mistranslation causes detrimental effects, we demonstrate that mistranslation also has positive effects on complex traits such as lifespan and locomotion. This has important implications for human health given the prevalence of tRNA variants in humans.
Collapse
Affiliation(s)
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | - Jessica Jagiello
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - William Yeung
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Brendan Charles
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
7
|
Isaacson JR, Berg MD, Yeung W, Villén J, Brandl CJ, Moehring AJ. Impact of tRNA-induced proline-to-serine mistranslation on the transcriptome of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593249. [PMID: 38766246 PMCID: PMC11100759 DOI: 10.1101/2024.05.08.593249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.
Collapse
Affiliation(s)
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | - William Yeung
- Department of Biology, Western University, N6A 5B7, London, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
8
|
Bily TMI, Heinemann IU, O'Donoghue P. Missense suppressor tRNA therapeutics correct disease-causing alleles by misreading the genetic code. Mol Ther 2024; 32:273-274. [PMID: 38219738 PMCID: PMC10861964 DOI: 10.1016/j.ymthe.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Affiliation(s)
- Teija M I Bily
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada; Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
9
|
Hou Y, Zhang W, McGilvray PT, Sobczyk M, Wang T, Weng SHS, Huff A, Huang S, Pena N, Katanski CD, Pan T. Engineered mischarged transfer RNAs for correcting pathogenic missense mutations. Mol Ther 2024; 32:352-371. [PMID: 38104240 PMCID: PMC10861979 DOI: 10.1016/j.ymthe.2023.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Missense mutations account for approximately 50% of pathogenic mutations in human genetic diseases, and most lack effective treatments. Gene therapies, gene editing, and RNA therapies, including transfer RNA (tRNA) modalities, are common strategies for genetic disease treatments. However, reported tRNA therapies are for nonsense mutations only. It has not been explored how tRNAs can be engineered to correct missense mutations. Here, we describe missense-correcting tRNAs (mc-tRNAs) as a potential therapeutic for correcting pathogenic missense mutations. Mc-tRNAs are engineered tRNAs charged with one amino acid, but read codons of another in translation. We first developed a series of fluorescent protein-based reporters that indicate the successful correction of missense mutations via restoration of fluorescence. We engineered mc-tRNAs that effectively corrected serine and arginine missense mutations in the reporters and confirmed the amino acid substitution by mass spectrometry and mc-tRNA expression by sequencing. We examined the transcriptome response to mc-tRNA expression and found some mc-tRNAs induced minimum transcriptomic changes. Furthermore, we applied an mc-tRNA to rescue a pathogenic CAPN3 Arg-to-Gln mutant involved in LGMD2A. These results establish a versatile pipeline for mc-tRNA engineering and demonstrate the potential of mc-tRNA as an alternative therapeutic platform for the treatment of genetic disorders.
Collapse
Affiliation(s)
- Yichen Hou
- Committee on Genomics, Genetics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Marek Sobczyk
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tianxin Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Allen Huff
- Proteomics Platform, University of Chicago, Chicago, IL 60637, USA
| | - Sihao Huang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Noah Pena
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Davey-Young J, Hasan F, Tennakoon R, Rozik P, Moore H, Hall P, Cozma E, Genereaux J, Hoffman KS, Chan PP, Lowe TM, Brandl CJ, O’Donoghue P. Mistranslating the genetic code with leucine in yeast and mammalian cells. RNA Biol 2024; 21:1-23. [PMID: 38629491 PMCID: PMC11028032 DOI: 10.1080/15476286.2024.2340297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.
Collapse
Affiliation(s)
- Josephine Davey-Young
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Henry Moore
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter Hall
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Schuntermann DB, Fischer JT, Bile J, Gaier SA, Shelley BA, Awawdeh A, Jahn M, Hoffman KS, Westhof E, Söll D, Clarke CR, Vargas-Rodriguez O. Mistranslation of the genetic code by a new family of bacterial transfer RNAs. J Biol Chem 2023; 299:104852. [PMID: 37224963 PMCID: PMC10404621 DOI: 10.1016/j.jbc.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jonathan T Fischer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jonmatthew Bile
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Sarah A Gaier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Brett A Shelley
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Aya Awawdeh
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Martina Jahn
- Department of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | | | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
12
|
Richards NGJ, Bearne SL, Goto Y, Parker EJ. Reactivity and mechanism in chemical and synthetic biology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220023. [PMID: 36633278 PMCID: PMC9835593 DOI: 10.1098/rstb.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 01/13/2023] Open
Abstract
Physical organic chemistry and mechanistic thinking provide a strong intellectual framework for understanding the chemical logic of evolvable informational macromolecules and metabolic transformations in living organisms. These concepts have also led to numerous successes in designing and applying tools to delineate biological function in health and disease, chemical ecology and possible alternative chemistries employed by extraterrestrial life. A symposium at the 2020 Pacifichem meeting was scheduled in December 2020 to discuss designing and exploiting expanded genetic alphabets, methods to understand the biosynthesis of natural products and re-engineering primary metabolism in bacteria. The COVID-19 pandemic led to postponement of in-person discussions, with the symposium eventually being held on 20-21 December 2021 as an online event. This issue is a written record of work presented on biosynthetic pathways and enzyme catalysis, engineering microorganisms with new metabolic capabilities, and the synthesis of non-canonical, nucleobases for medical applications and for studies of alternate chemistries for living organisms. The variety of opinion pieces, reviews and original research articles provide a starting point for innovations that clarify how complex biological systems emerge from the rules of chemical reactivity and mechanism. This article is part of the themed issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Advanced Molecular Evolution, 13709 Progress Boulevard, Alachua, FL 32615, USA
| | - Stephen L. Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2
| | - Yuki Goto
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Emily J. Parker
- Department of Chemistry, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand
| |
Collapse
|
13
|
Lant JT, Hasan F, Briggs J, Heinemann IU, O’Donoghue P. Genetic Interaction of tRNA-Dependent Mistranslation with Fused in Sarcoma Protein Aggregates. Genes (Basel) 2023; 14:518. [PMID: 36833445 PMCID: PMC9956149 DOI: 10.3390/genes14020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julia Briggs
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
14
|
Towards a Cure for HARS Disease. Genes (Basel) 2023; 14:genes14020254. [PMID: 36833180 PMCID: PMC9956352 DOI: 10.3390/genes14020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.
Collapse
|