1
|
Crowther C, Adams CIM, Fondren A, Janzen FJ. Adult Sex-Ratio Bias Does Not Lead to Detectable Adaptive Offspring Sex Allocation Via Nest-Site Choice in a Turtle With Temperature-Dependent Sex Determination. Ecol Evol 2024; 14:e70543. [PMID: 39539677 PMCID: PMC11560344 DOI: 10.1002/ece3.70543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Sex-ratio theory predicts that parents can optimise their fitness by producing offspring of the rare sex, yet there is a dearth of empirical evidence for adaptive sex allocation in response to the adult sex ratio (ASR). This is concerning, as anthropogenic disruption of the sex ratios of reproductive individuals threatens to cause demographic collapse in animal populations. Species with environmental sex determination (ESD) are especially at risk but may possess the capacity to adaptively influence offspring sex via control over the developmental environment. For example, reptiles with temperature-dependent sex determination (TSD) could conceivably choose nest sites with thermal characteristics that produce offspring of the rare sex. To test this hypothesis, we seeded three secure outdoor ponds with different sex ratios (~M:F 3:1, 1:1, and 1:3) of adult painted turtles (Chrysemys picta), a reptile species with TSD. We then quantified nesting traits that could influence nest temperature and thus offspring sex ratio, including nesting date, nest depth, and nest canopy cover. We found no directional relationship between the ASR treatments and any measured nest traits and thus rejected our hypothesis. Interestingly, increased maternal body size was associated with reduced nest canopy cover, and this trend was more pronounced in the biased ASR treatments. If adaptive sex allocation occurs in this system, it instead may manifest via maternal epigenetic predisposition of offspring sex or in response to a phenomenon other than the ASR.
Collapse
Affiliation(s)
- Claudia Crowther
- Departments of Fisheries and Wildlife & Integrative Biology, W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
| | - Clare I. M. Adams
- Coastal People Southern SkiesVictoria University of Wellington Te Herenga WakaWellingtonNew Zealand
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Andy Fondren
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Fredric J. Janzen
- Departments of Fisheries and Wildlife & Integrative Biology, W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
2
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Gilbert AL, Wayne SM, Norris MC, Rodgers JM, Warner DA. Stressful Body Temperatures as a Maternal Effect on Lizard Reproduction. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:292-301. [PMID: 39680905 DOI: 10.1086/733349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractUnderstanding the relationship between the environment parents experience during reproduction and the environment embryos experience in the nest is essential for determining the intergenerational responses of populations to novel environmental conditions. Thermal stress has become commonplace for organisms inhabiting areas affected by rising temperatures. Exposure to body temperatures that approach, but do not exceed, upper thermal limits often induces adverse effects in organisms, but the propensity for these temperatures to have intergenerational consequences has not been explored in depth. Here, we quantified the effects of thermal stress on the reproductive physiology and development of brown anoles (Anolis sagrei) when thermal stress is experienced by mothers and by eggs during incubation. Mothers exposed to thermal stress produced smaller eggs and smaller offspring with reduced growth rates, while egg stress reduced developmental time and offspring mass. Hatchling survival and growth were negatively affected by thermal stress experienced by mothers but not by thermal stress experienced as eggs. We found mixed evidence for an additive effect of thermal stress on offspring; rather, thermal stress had specific (and most often negative) effects on different components of offspring phenotypes and fitness proxies when experienced either by mothers or by eggs. Stressful body temperatures therefore can function in a similar manner to other types of maternal effects in reptiles; however, this maternal effect has predominantly negative consequences on offspring.
Collapse
|
4
|
Stahlschmidt ZR. Warm and thermally variable incubation conditions reduce embryonic performance and carry over to influence hatchling tradeoffs. J Therm Biol 2024; 124:103946. [PMID: 39265502 DOI: 10.1016/j.jtherbio.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Animals' thermal sensitivities have long been characterized by thermal performance curves (TPCs) or reaction norms, and TPCs may predict animals' responses to climate change. Typically, TPCs are parameterized by measuring performance at a range of constant temperatures. Yet, animals encounter a range of thermal environments, and temperature variability is an aspect of climate change that may affect animals more than gradual warming. Daily temperature variability is particularly important for eggs in most taxa because they are highly sensitive to temperature and cannot behaviorally avoid stressful temperatures. Thus, the legacy of thermal conditions experienced during incubation may carryover to subsequent life stages. Here, I factorially manipulated mean temperature (20, 25, or 30 °C) and daily temperature range (DTR; ±0, 5, or 10 °C) during incubation for eggs of the variable field cricket (Gryllus lineaticeps) to integrate the role of DTR into the established paradigm of TPCs. Low DTR (±5 °C) was not generally costly, and it even improved hatchling starvation resistance (sensu hormesis). However, high DTR (±10 °C) reduced and delayed hatching at a warm mean temperature (30 °C). The effects of high DTR carried over to accelerate hatchling development at an expense to hatchling starvation resistance-therefore, thermal conditions during incubation can shape tradeoffs among important traits related to life history and stress tolerance later in life. In sum, animals may exhibit complex responses to their increasingly warmer, more thermally variable environments.
Collapse
|
5
|
Iglesias-Carrasco M, Zhang J, Noble DWA. Maternal investment and early thermal conditions affect performance and antipredator responses. Behav Ecol 2024; 35:arae035. [PMID: 38779594 PMCID: PMC11107847 DOI: 10.1093/beheco/arae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Exposure to increased temperatures during early development can lead to phenotypic plasticity in morphology, physiology, and behavior across a range of ectothermic animals. In addition, maternal effects are known to be important contributors to phenotypic variation in offspring. Whether the 2 factors interact to shape offspring morphology and behavior is rarely explored. This is critical because climate change is expected to impact both incubation temperature and maternal stress and resource allocation. Using a fully factorial design, and Bayesian multivariate mixed models, we explored how the manipulation of early thermal environment and yolk-quantity in eggs affected the morphology, performance, and antipredator behavior of 2 sympatric Australian skink species (Lampropholis delicata and L. guichenoti). We found that juveniles from the hot treatment were larger than those on the cold treatment in L. guichenoti but not L. delicata. Using repeated behavioral measures for individual lizards, we found an interaction between incubation temperature and maternal investment in performance, with running speed being affected in a species-specific way by the treatment. We predicted that changes in performance should influence antipredator responses. In support of this prediction, we found that maternal investment impacted antipredator behavior, with animals from the yolk-reduced and cold treatment resuming activity faster after a simulated predatory attack in L. delicata. However, the prediction was not supported in L. guichenoti. Our results highlight the importance of exploring the multifaceted role that environments play across generations to understand how different anthropogenic factors will impact wildlife in the future.
Collapse
Affiliation(s)
- Maider Iglesias-Carrasco
- Evolution and Ecology of Sexual Interactions Group, Doñana Biological Station-CSIC, Seville, 41092, Spain
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Jiayu Zhang
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Smaga CR, Bock SL, Johnson JM, Rainwater T, Singh R, Deem V, Letter A, Brunell A, Parrott BB. The influence of incubation temperature on offspring traits varies across northern and southern populations of the American alligator ( Alligator mississippiensis). Ecol Evol 2024; 14:e10915. [PMID: 38371857 PMCID: PMC10869887 DOI: 10.1002/ece3.10915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Maternal provisioning and the developmental environment are fundamental determinants of offspring traits, particularly in oviparous species. However, the extent to which embryonic responses to these factors differ across populations to drive phenotypic variation is not well understood. Here, we examine the contributions of maternal provisioning and incubation temperature to hatchling morphological and metabolic traits across four populations of the American alligator (Alligator mississippiensis), encompassing a large portion of the species' latitudinal range. Our results show that whereas the influence of egg mass is generally consistent across populations, responses to incubation temperature show population-level variation in several traits, including mass, head length, head width, and residual yolk mass. Additionally, the influence of incubation temperature on developmental rate is greater at northern populations, while the allocation of maternal resources toward fat body mass is greater at southern populations. Overall, our results suggest that responses to incubation temperature, relative to maternal provisioning, are a larger source of interpopulation phenotypic variation and may contribute to the local adaptation of populations.
Collapse
Affiliation(s)
- Christopher R. Smaga
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- The University of Georgia's Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Samantha L. Bock
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- The University of Georgia's Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Josiah M. Johnson
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- The University of Georgia's Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Thomas Rainwater
- Belle W. Baruch Institute of Coastal Ecology and Forest ScienceClemson UniversityGeorgetownSouth CarolinaUSA
- Tom Yawkey Wildlife CenterGeorgetownSouth CarolinaUSA
| | - Randeep Singh
- Belle W. Baruch Institute of Coastal Ecology and Forest ScienceClemson UniversityGeorgetownSouth CarolinaUSA
| | - Vincent Deem
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation CommissionGainesvilleFloridaUSA
| | - Andrew Letter
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation CommissionGainesvilleFloridaUSA
| | - Arnold Brunell
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation CommissionGainesvilleFloridaUSA
| | - Benjamin B. Parrott
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- The University of Georgia's Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| |
Collapse
|